scholarly journals Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

2015 ◽  
Vol 13 (1) ◽  
pp. 12-20 ◽  
Author(s):  
D. K. Ramesha ◽  
Adhiviraj Singh Bangari ◽  
Chirag P. Rathod ◽  
Chaitanya R. Samartha

Abstract This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

2020 ◽  
Vol 197 ◽  
pp. 06010
Author(s):  
Antonio Caricato ◽  
Antonio Paolo Carlucci ◽  
Antonio Ficarella ◽  
Luciano Strafella

In this paper, the effect of late injection on combustion and emission levels has been investigated on a single cylinder compression ignition engine operated in dual-fuel mode injecting methane along the intake duct and igniting it through a pilot fuel injected directly into the combustion chamber. During the tests, the amount of pilot fuel injected per cycle has been kept constant, while the amount of methane has been varied on three levels. Therefore, three levels of engine load have been tested, while speed has been kept constant equal to 1500rpm. Pilot injection pressure has been varied on three set points, namely 500, 1000 and 1500 bar. For each engine load and injection pressure, pilot injection timing has been swept on a very broad range of values, spanning from very advanced to very late values. The analysis of heat release rate indicates that MK-like conditions are established in dual-fuel mode with late pilot injection. In these conditions, pollutant species, and NOx levels in particular, are significantly reduced without penalization – and in several conditions with improvement – on fuel conversion efficiency.


Author(s):  
Xiangyu Meng ◽  
Wuqiang Long ◽  
Yihui Zhou ◽  
Mingshu Bi ◽  
Chia-Fon F. Lee

Because of the potential to reduce NOx and PM emissions simultaneously and the utilization of biofuel, diesel/compressed natural gas (CNG) dual-fuel combustion mode with port injection of CNG and direct injection of diesel has been widely studied. While in comparison with conventional diesel combustion mode, the dual-fuel combustion mode generally leads lower thermal efficiency, especially at low and medium load, and higher carbon monoxide (CO) and total hydrocarbons (THC) emissions. In this work, n-butanol was blended with diesel as the pilot fuel to explore the possibility to improve the performance and emissions of dual-fuel combustion mode with CNG. Various pilot fuels of B0 (pure diesel), B10 (90% diesel/10% n-butanol by volume basis), B20 (80% diesel/20% n-butanol) and B30 (70% diesel/30% n-butanol) were compared at the CNG substitution rate of 70% by energy basis under the engine speeds of 1400 and 1800 rpm. The experiments were carried out by sweeping a wide range of pilot fuel start of injection timings based on the same total input energy including pilot fuel and CNG. As n-butanol was added into the pilot fuel, the pilot fuel/CNG/air mixture tends to be more homogeneous. The results showed that for the engine speed of 1400 rpm, pilot fuel with n-butanol addition leads to a slightly lower indicated thermal efficiency (ITE). B30 reveals much lower NOx emission and slightly higher THC emissions. For the engine speed of 1800 rpm, B20 can improve ITE and decrease the NOx and THC emissions simultaneously relative to B0.


Author(s):  
Xiangyu Meng ◽  
Yuanxu Li ◽  
Karthik Nithyanandan ◽  
Wuqiang Long ◽  
Chia-Fon F. Lee

Dual-fuel combustion mode with direct injection of diesel as the pilot fuel and port injection of compressed natural gas (CNG) in compression ignition (CI) engines has been widely investigated to comply with the latest emission regulations. The diesel-CNG dual-fuel combustion mode shows some potential to decrease NOx and soot emissions simultaneously, while it reveals a lower thermal efficiency compared to the pure diesel combustion mode under low load condition. The purpose of the current study is to investigate the possibility of using diesel blended with 1-butanol as the pilot fuel to enhance the engine performance and reduce emissions. Three pilot fuels — B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with the CNG substitution rates of 50% and 80% were compared at an engine speed of 1200 rpm. The experiments were conducted by sweeping the pilot fuel injection timing from −3 to −18 ° CA ATDC with an equivalent total energy (∼5 bar IMEP). The results illustrated that, for the 50% CNG substitution rate, the dual-fuel operation mode revealed a higher indicated thermal efficiency (ITE) under low load conditions, and B10 can significantly improve the ITE due to the shorter combustion duration. The emission results of B10 showed that it obtained lower THC and CO emissions, but a slightly higher NOx emission. For the 80% CNG substitution rate, the results presented lower ITE, higher THC and lower NOx emissions, comparatively.


Author(s):  
J Stewart ◽  
A Clarke

Dual-fuel engines are modified compression ignition engines, where the primary source of fuel is a gaseous fuel, and ignition is provided by a ‘pilot’ injection of a reduced quantity of diesel. The generally accepted understanding of the dual-fuel engine describes its combustion process as proceeding in three stages. Initially, around half of the pilot will burn and entrain some gaseous fuel into an overall fuel-rich process. Subsequently, the remaining pilot fuel burns and entrains an increasing amount of the primary fuel into its reaction zone. In the final stage, a flame propagation process engulfs the remaining gaseous fuel. In this article, a three-zone model for the analysis of heat-release rate during the dual-fuel combustion process will be derived. This model will be tested against data obtained for diesel combustion and then applied to experimental data from a dual-fuel test program. It will be shown that there is little evidence to support the generally accepted description of the dual-fuel combustion process in a direct injection engine. The conclusion of this work is that dual-fuel combustion may be better considered as a diesel combustion process, where the gaseous fuel modifies the reaction zone surrounding each igniting droplet of the pilot fuel.


Fuel ◽  
2020 ◽  
Vol 268 ◽  
pp. 117345 ◽  
Author(s):  
Xiangyu Meng ◽  
Junfu Wang ◽  
Yihui Zhou ◽  
Hua Tian ◽  
Wuqiang Long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document