scholarly journals Nanosized MoO3 as a reusable heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanones

2015 ◽  
Vol 33 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Nitin R. Dighore ◽  
Priyanka L. Anandgaonker ◽  
Suresh T. Gaikwad ◽  
Anjali S. Rajbhoj

AbstractCrystalline MoO3 nanoparticles were obtained by electrochemical synthesis process using tetrapropylammonium bromide as a stabilizer and structure-directing agent in ACN:THF(4:1) solvent. Formation of MoO3 nanoparticles took place at a constant supply current of 14 mA/cm2. These synthesized MoO3 nanoparticles were characterized by UV-Vis spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM). So prepared MoO3 nanoparticles were used as a heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanone derivatives. This protocol offers several advantages, such as simple work-up procedure, recyclability of the catalyst, excellent product yield in a short reaction time and purification of products with a non-chromatographic method.

2020 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Azwan Morni

This study reports a green method for the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of Salix aegyptiaca extract. The effects of gold salt concentration, extract concentration and extract quantity were investigated on nanoparticles synthesis. Novel methods of ideally synthesizing AuNPs are thus thought that are formed at ambient temperatures, neutral pH, low costs and environmentally friendly fashion. AuNPs were characterized with different techniques such as UV–vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, and TEM. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary carbonyl group, -OH groups and other stabilizing functional groups. TEM experiments showed that these nanoparticles are formed with various shapes and X-ray diffraction pattern showed high purity and face centered cubic structure of AuNPs. For electrochemical properties of AuNPs, a modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated. The results show that electronic transmission rate between the modified electrode and [Fe (CN)6]3-/4- increased.


2013 ◽  
Vol 829 ◽  
pp. 643-648
Author(s):  
Mahdi Mirzababaei ◽  
Hossein Behniafar ◽  
Hamid Hashemimoghadam

In the present work, we have focused on the synthesis and characterization of Polystyrene (PS) nanocomposites incorporated with anatase-TiO2. The nanoTiO2particles were used in two forms including surface modified (mod TiO2) and surface unmodified (unmod TiO2). Accordingly, two PS/TiO2nanocomposites were synthesized, i.e. (PS/mod TiO2) and (PS/unmod TiO2), starting from styrene monomer in the presence of sodium dodecylsulfate (SDS) emulsifier. 4,4-Methylene diphenyldiisocyanate (4,4-MDI) was used for the surface modification of the nanoTiO2particles via urethanation reaction with terminal OH groups. After modification, optical behavior of the samples was determined. The chemical structure of pure polystyrene (pure-PS), (mod TiO2), (PS/mod TiO2), and (PS/unmod TiO2) was confirmed by FT-IR spectroscopy. X-ray diffraction (XRD) analyses obviously showed the broad peak related to the (pure-PS) centered at 2θ of 20 ° as well as the sharp characteristic peak of the TiO2nanoparticles appeared at about 2θ of 25 °. Moreover, diffuse reflectance UV/vis spectroscopy analyses, (mod TiO2) and (PS/mod TiO2) samples showed strong visible absorption at the range of 400 to 600 nm.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Murugan Saranya ◽  
Chella Santhosh ◽  
Rajendran Ramachandran ◽  
Andrews Nirmala Grace

CuS nanostructures have been successfully synthesized by hydrothermal route using copper nitrate and sodium thiosulphate as copper and sulfur precursors. Investigations were done to probe the effect of cationic surfactant, namely, Cetyltrimethylammonium bromide (CTAB) on the morphology of the products. A further study has been done to know the effect of reaction time on the morphology of CuS nanostructures. The FE-SEM results showed that the CuS products synthesized in CTAB were hexagonal plates and the samples prepared without CTAB were nanoplate like morphology of sizes about 40–80 nm. Presence of nanoplate-like structure of size about 40–80 nm was observed for the sample without CTAB. The synthesized CuS nanostructures were characterized by X-ray diffraction (XRD), FE-SEM, DRS-UV-Vis spectroscopy, and FT-IR spectroscopy. A possible growth mechanism has been elucidated for the growth of CuS nanostructures.


2013 ◽  
Vol 67 (2) ◽  
Author(s):  
Bahador Karami ◽  
Zahra Zare ◽  
Khalil Eskandari

AbstractMolybdate sulfonic acid (MSA) as a highly efficient catalyst was synthesized and employed for the synthesis of octahydroxanthene-1,8-dione derivatives. MSA efficiently catalyzed condensation of a wide range of aryl aldehydes and cyclohexane-1,3-diones to obtain octahydroxanthene-1,8-diones. It was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), and FT-IR spectroscopy. This catalyst can be recovered and reused several times in other reactions maintaining its high activity. This novel and green method is very cheap and has many advantages such as excellent yields, the use of recoverable and eco-friendly catalysts, and a simple work-up procedure.


2011 ◽  
Vol 695 ◽  
pp. 295-298 ◽  
Author(s):  
Dong Ha Hwang ◽  
Kyong Sop Han ◽  
Byung Ha Lee

A willemite brown inorganic pigment was synthesized by subsyituting MnO for ZnO. The composition of MnxZn2-xSiO4 (X=0.1, 0.3, 0.5, 0.7 and 0.9mole) was synthesized at 1200~1300°C by solid state method. The characteristics of synthesized pigment were analyzed by X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy and SEM. The UV- vis spectroscopy and CIE L*a*b* measurement were employed to analyzed color. Willemite single crystal phase was synthesized with compositions of Mn0.3Zn1.5SiO2 and Mn0.5Zn1.5 SiO2 from 1300°C/3h. The synthesized pigment of Mn0.5Zn1.5 SiO2 at1300°C/3h was applicated to lime barium glaze and lime zinc glaze and the CIE L*a*b* values were 30.32, 7.17, 3.14 and 32.04, 8.18, 3.49, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Zhenhua Cheng ◽  
Na Cui ◽  
Shengjuan Jiang ◽  
Hongxiao Zhang ◽  
Lijun Zhu ◽  
...  

Five metallosulfophthalocyanines (Fe, Ni, Zn, Co, and Cu) compounds were synthesized by microwave irradiation. Compared to the conventional method of synthesis in terms of reaction time and yields, the microwave-promoted synthesis is preferred with high product yield and short reaction time. All synthesized products were characterized with MALDI-TOF mass spectrum, Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), and X-ray diffraction (XRD). Aggregation behavior of the five metallosulfophthalocyanines (MSPc) in different solvents was studied by UV-Vis spectroscopy separately in N,N-dimethyl formamide (DMF) and NaOH aqueous solution (5%wt). A redshift of maximum absorption wavelength and deviations from Lambert-Beer law with increasing the concentration were observed. The dimerization equilibrium constants (K) of the five MSPc were determined, respectively.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2013 ◽  
Vol 655-657 ◽  
pp. 1927-1930 ◽  
Author(s):  
Guang Na Zhang ◽  
Zhi Yue Xia ◽  
Jian Ming Ouyang ◽  
Li Kuan

The presence of crystallites in urine is closely related to stones formation. In this article, the components, morphology of nano- and micro-crystallites in urines of 20 uric acid (UA) stone formers as well as their relationship with the formation of UAstones were comparatively studied using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The main constituent of urinary crystallites was uric acid. Their particle size distribution was highly uneven, ranging from several nanometers to several tens of micrometers, and obvious aggregation was observed. These results showed that there was close relationship among stone components, urinary crystallites composition and urine pH.


2012 ◽  
Vol 560-561 ◽  
pp. 434-437 ◽  
Author(s):  
Lan Wang ◽  
Wen Ji Guo ◽  
Yan Zhao Zhao

The objective of this paper was to prepare the composite of crefradine/montmorillionite in the method of solution intercalation. The drug load and intercalation rate varied with the drug concentration. X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) Spectroscopy, and thermal analysis (TG-DSC) were applied to characterize composite mentioned above. Together with drug release tests, results indicate cefradine intercalated into montmorillionite.The release profiles of cefradine/MMT in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37°Cduring 10h are shown in Fig. 4. The amount of cefradine in the beginning 2h came up to 35% and 50%, and in the following time, cefradine released slowly. The release behaviors met the requirements of sustained release.


Sign in / Sign up

Export Citation Format

Share Document