Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis

2013 ◽  
Vol 67 (2) ◽  
Author(s):  
Bahador Karami ◽  
Zahra Zare ◽  
Khalil Eskandari

AbstractMolybdate sulfonic acid (MSA) as a highly efficient catalyst was synthesized and employed for the synthesis of octahydroxanthene-1,8-dione derivatives. MSA efficiently catalyzed condensation of a wide range of aryl aldehydes and cyclohexane-1,3-diones to obtain octahydroxanthene-1,8-diones. It was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), and FT-IR spectroscopy. This catalyst can be recovered and reused several times in other reactions maintaining its high activity. This novel and green method is very cheap and has many advantages such as excellent yields, the use of recoverable and eco-friendly catalysts, and a simple work-up procedure.

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2020 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Azwan Morni

This study reports a green method for the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of Salix aegyptiaca extract. The effects of gold salt concentration, extract concentration and extract quantity were investigated on nanoparticles synthesis. Novel methods of ideally synthesizing AuNPs are thus thought that are formed at ambient temperatures, neutral pH, low costs and environmentally friendly fashion. AuNPs were characterized with different techniques such as UV–vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, and TEM. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary carbonyl group, -OH groups and other stabilizing functional groups. TEM experiments showed that these nanoparticles are formed with various shapes and X-ray diffraction pattern showed high purity and face centered cubic structure of AuNPs. For electrochemical properties of AuNPs, a modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated. The results show that electronic transmission rate between the modified electrode and [Fe (CN)6]3-/4- increased.


2015 ◽  
Vol 33 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Nitin R. Dighore ◽  
Priyanka L. Anandgaonker ◽  
Suresh T. Gaikwad ◽  
Anjali S. Rajbhoj

AbstractCrystalline MoO3 nanoparticles were obtained by electrochemical synthesis process using tetrapropylammonium bromide as a stabilizer and structure-directing agent in ACN:THF(4:1) solvent. Formation of MoO3 nanoparticles took place at a constant supply current of 14 mA/cm2. These synthesized MoO3 nanoparticles were characterized by UV-Vis spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM). So prepared MoO3 nanoparticles were used as a heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanone derivatives. This protocol offers several advantages, such as simple work-up procedure, recyclability of the catalyst, excellent product yield in a short reaction time and purification of products with a non-chromatographic method.


2021 ◽  
Vol 66 ◽  
pp. 61-71
Author(s):  
Tahereh Heidarzadeh ◽  
Navabeh Nami ◽  
Daryoush Zareyee

The principal aim of this research is using biosynthesized ZnO-CaO nanoparticles (NPs) for preparation of indole derivatives. ZnO-CaO NPs have been prepared using Zn(CH3COO)2 and eggshell waste powder in solvent-free conditions. Morphology and structure of NPs were determined by FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive spectra (EDS). It was used as a highly efficient catalyst for the synthesis of indole derivatives. Some indole derivatives were synthesized by the reaction of indole, formaldehyde, aromatic and aliphatic amines in the presence of ZnO-CaO NPs (5 mol%) in ethanol under reflux conditions. The assigned structure was further established by CHN analyses, NMR, and FT-IR spectra. Because of excellent capacity, the exceedingly simple workup and good yield, eco-friendly catalyst ZnO-CaO NPs were proved to be a good catalyst for this reaction.


2019 ◽  
Vol 946 ◽  
pp. 351-356 ◽  
Author(s):  
Olga M. Kanunnikova ◽  
V.V. Aksenova ◽  
G.A. Dorofeev

The present work deals with the investigation of the transformations of the solid and liquid phases at high energy planetary ball milling of toluene together with titanium powder. The sequence of structural toluene transformations using FT-IR spectroscopy was investigated. Phase constitutions and morphology of ball milled titanium powders were studied by X-ray diffraction and scanning electron microscopy. It is shown that mechanically induced destruction of toluene occurs by the mechanism of catalytic cracking. During ball milling, concentration of aromatic hydrocarbons in the liquid phase decreases, at the same time the content of alkenes, cycloalkanes, and isoalkanes increases. The main solid products of the mechanosynthesis were cubic and hexagonal titanium carbo-hydrides.Evolution of lattice parameters, crystallites sizes, and micro-stresses of the solid phases during ball milling as a function of the mechanical energy dose have been discussed.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Dandan Zhao ◽  
Wen-Can Huang ◽  
Na Guo ◽  
Shuye Zhang ◽  
Changhu Xue ◽  
...  

In this research, a two-step extraction approach was developed for chitin preparation from shrimp shells by utilizing citric acids and deep eutectic solvents (DESs), which effectively removed minerals and proteins. In the first step, minerals of shrimp shells were removed by citric acid, and the demineralization efficiency reached more than 98%. In the second step, the removal of protein was carried out using deep eutectic solvents with the assistance of microwave, and the deproteinization efficiency was more than 88%. The results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), and thermogravimetric analysis (TGA) showed that the quality of DES-prepared chitin was comparable to that of traditional acid/alkali-prepared chitin. These results were realized without utilizing hazardous chemicals, which are detrimental to the environment. This research indicates that a DES-based preparation approach has the potential for application in the recovery of biopolymers from natural resources.


2015 ◽  
Vol 71 (1) ◽  
pp. 48-52 ◽  
Author(s):  
José J. Campos-Gaxiola ◽  
Susana P. Arredondo Rea ◽  
Ramón Corral Higuera ◽  
Herbert Höpfl ◽  
Adriana Cruz Enríquez

Two organic–inorganic hybrid compounds have been prepared by the combination of the 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium cation with perhalometallate anions to give 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single-crystal X-ray diffraction analysis, showing the formation of a three-dimensional network throughX—H...ClnM−(X= C, N+;n= 1, 2;M= CoII, ZnII) hydrogen-bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).


2007 ◽  
Vol 280-283 ◽  
pp. 311-314 ◽  
Author(s):  
Yan Fei Gu ◽  
Hui Ming Ji ◽  
Bin Zhang ◽  
Ting Xian Xu

CuO-SrTiO3-based thin films were prepared by novel sol-gel technology on Al2O3 substrates using Cu(NO3)2, SrCl2 and TiCl4 as the starting materials, critic acid and ethylene glycol as chelating agents. CO2 sensing properties of the films were investigated. Structure characteristics of the sol and asgrown thin films were analyzed by FT-IR spectrum, X-ray diffraction and SEM. The results reveal that the films consisted of CuO phase and SrTiO3 phase have nanocrystalline microstructure at 750°C for 40 min. The modified CuO-SrTiO3 thin films exhibit good resistance-temperature and gas sensitivity properties in a wide range of temperature. The films exposed to 6% CO2 show that sensitivity are 32, and response and recover time are within 2 s at 250 °C operating temperature.


2016 ◽  
Vol 3 (10) ◽  
pp. 1306-1316 ◽  
Author(s):  
M. Węcławik ◽  
A. Gągor ◽  
R. Jakubas ◽  
A. Piecha-Bisiorek ◽  
W. Medycki ◽  
...  

Two hybrid crystals imidazolium iodoantimonate(iii) and iodobismuthate(iii) have been synthesized and characterized in a wide temperature range (100–350 K) by means of X-ray diffraction, dielectric spectroscopy, proton magnetic resonance, FT-IR spectroscopy and optical observations.


Sign in / Sign up

Export Citation Format

Share Document