Growth of CuS Nanostructures by Hydrothermal Route and Its Optical Properties

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Murugan Saranya ◽  
Chella Santhosh ◽  
Rajendran Ramachandran ◽  
Andrews Nirmala Grace

CuS nanostructures have been successfully synthesized by hydrothermal route using copper nitrate and sodium thiosulphate as copper and sulfur precursors. Investigations were done to probe the effect of cationic surfactant, namely, Cetyltrimethylammonium bromide (CTAB) on the morphology of the products. A further study has been done to know the effect of reaction time on the morphology of CuS nanostructures. The FE-SEM results showed that the CuS products synthesized in CTAB were hexagonal plates and the samples prepared without CTAB were nanoplate like morphology of sizes about 40–80 nm. Presence of nanoplate-like structure of size about 40–80 nm was observed for the sample without CTAB. The synthesized CuS nanostructures were characterized by X-ray diffraction (XRD), FE-SEM, DRS-UV-Vis spectroscopy, and FT-IR spectroscopy. A possible growth mechanism has been elucidated for the growth of CuS nanostructures.

2020 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Azwan Morni

This study reports a green method for the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of Salix aegyptiaca extract. The effects of gold salt concentration, extract concentration and extract quantity were investigated on nanoparticles synthesis. Novel methods of ideally synthesizing AuNPs are thus thought that are formed at ambient temperatures, neutral pH, low costs and environmentally friendly fashion. AuNPs were characterized with different techniques such as UV–vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, and TEM. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary carbonyl group, -OH groups and other stabilizing functional groups. TEM experiments showed that these nanoparticles are formed with various shapes and X-ray diffraction pattern showed high purity and face centered cubic structure of AuNPs. For electrochemical properties of AuNPs, a modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated. The results show that electronic transmission rate between the modified electrode and [Fe (CN)6]3-/4- increased.


2011 ◽  
Vol 695 ◽  
pp. 295-298 ◽  
Author(s):  
Dong Ha Hwang ◽  
Kyong Sop Han ◽  
Byung Ha Lee

A willemite brown inorganic pigment was synthesized by subsyituting MnO for ZnO. The composition of MnxZn2-xSiO4 (X=0.1, 0.3, 0.5, 0.7 and 0.9mole) was synthesized at 1200~1300°C by solid state method. The characteristics of synthesized pigment were analyzed by X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy and SEM. The UV- vis spectroscopy and CIE L*a*b* measurement were employed to analyzed color. Willemite single crystal phase was synthesized with compositions of Mn0.3Zn1.5SiO2 and Mn0.5Zn1.5 SiO2 from 1300°C/3h. The synthesized pigment of Mn0.5Zn1.5 SiO2 at1300°C/3h was applicated to lime barium glaze and lime zinc glaze and the CIE L*a*b* values were 30.32, 7.17, 3.14 and 32.04, 8.18, 3.49, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Quanguo Li ◽  
Wenli Zuo ◽  
Feng Li

A new ethylenediaminetetraacetic acid- (EDTA-) mediated hydrothermal route to prepare chrysanthemum-shaped samarium orthovanadate (SmVO4) nanocrystals with decavanadate (K6V10O28·9H2O) as vanadium source has been developed. The present hydrothermal approach is simple and reproducible and employs a relatively mild reaction temperature. The EDTA, pH value, and temperature of the reaction systems play important roles in determining the morphologies and growth process of the SmVO4products. The products have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectra (PL), and UV-Vis spectroscopy.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2021 ◽  
Vol 19 (5) ◽  
pp. 132-138
Author(s):  
Maan Abd-Alameer Salih ◽  
Q.S. Kareem ◽  
Mohammed Hadi Shinen

In this exploration Poly lactic corrosive (PLA) was orchestrated the ring-opening polymerization Poly lactic corrosive (PLA) blended with poly(3-hexylthiophene) (P3HT) which prepared by solution. Blends thin films Synthesis by spin coating technique and using Tetrahydrofuran (THF) as solvent. PLA powder was 'characterized by' 'X-ray' 'diffraction', '(FT-IR)'. pure Optical properties (PLA), (PLA)/P3HT blends thin films with different percentage of P3HT (0, 1, 2, and 3) wt% were investigated using UV-VS spectroscopy The results showed that the absorption, absorption coefficient, extinction coefficient and conductivity increase with increasing the rate of deformation P3HT, The energy gap decreases with increasing deformation.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2018 ◽  
Vol 15 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Baghdad Science Journal

Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).


2015 ◽  
Vol 33 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Nitin R. Dighore ◽  
Priyanka L. Anandgaonker ◽  
Suresh T. Gaikwad ◽  
Anjali S. Rajbhoj

AbstractCrystalline MoO3 nanoparticles were obtained by electrochemical synthesis process using tetrapropylammonium bromide as a stabilizer and structure-directing agent in ACN:THF(4:1) solvent. Formation of MoO3 nanoparticles took place at a constant supply current of 14 mA/cm2. These synthesized MoO3 nanoparticles were characterized by UV-Vis spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM). So prepared MoO3 nanoparticles were used as a heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanone derivatives. This protocol offers several advantages, such as simple work-up procedure, recyclability of the catalyst, excellent product yield in a short reaction time and purification of products with a non-chromatographic method.


2019 ◽  
Vol 946 ◽  
pp. 351-356 ◽  
Author(s):  
Olga M. Kanunnikova ◽  
V.V. Aksenova ◽  
G.A. Dorofeev

The present work deals with the investigation of the transformations of the solid and liquid phases at high energy planetary ball milling of toluene together with titanium powder. The sequence of structural toluene transformations using FT-IR spectroscopy was investigated. Phase constitutions and morphology of ball milled titanium powders were studied by X-ray diffraction and scanning electron microscopy. It is shown that mechanically induced destruction of toluene occurs by the mechanism of catalytic cracking. During ball milling, concentration of aromatic hydrocarbons in the liquid phase decreases, at the same time the content of alkenes, cycloalkanes, and isoalkanes increases. The main solid products of the mechanosynthesis were cubic and hexagonal titanium carbo-hydrides.Evolution of lattice parameters, crystallites sizes, and micro-stresses of the solid phases during ball milling as a function of the mechanical energy dose have been discussed.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Dandan Zhao ◽  
Wen-Can Huang ◽  
Na Guo ◽  
Shuye Zhang ◽  
Changhu Xue ◽  
...  

In this research, a two-step extraction approach was developed for chitin preparation from shrimp shells by utilizing citric acids and deep eutectic solvents (DESs), which effectively removed minerals and proteins. In the first step, minerals of shrimp shells were removed by citric acid, and the demineralization efficiency reached more than 98%. In the second step, the removal of protein was carried out using deep eutectic solvents with the assistance of microwave, and the deproteinization efficiency was more than 88%. The results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), and thermogravimetric analysis (TGA) showed that the quality of DES-prepared chitin was comparable to that of traditional acid/alkali-prepared chitin. These results were realized without utilizing hazardous chemicals, which are detrimental to the environment. This research indicates that a DES-based preparation approach has the potential for application in the recovery of biopolymers from natural resources.


Sign in / Sign up

Export Citation Format

Share Document