scholarly journals Effect of lead salts on phase, morphologies and photoluminescence of nanocrystalline PbMoO4 and PbWO4 synthesized by microwave radiation

2016 ◽  
Vol 34 (3) ◽  
pp. 529-533 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Budsabong Kuntalue ◽  
Surachai Artkla ◽  
Surin Promnopas ◽  
Wonchai Promnopas ◽  
...  

AbstractPbMoO4 and PbWO4 were successfully synthesized by microwave radiation using different lead salts (acetate, chloride, nitrate and sulfate) and Na2MO4 (M = Mo, W) in propylene glycol. The products were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM, TEM), Fourier transform infrared (FT-IR), Raman spectroscopy and photoluminescence (PL) spectroscopy. In this research, morphologies, crystallization and photoluminescence of the products were influenced by the kinetics of anions, including the detection of M–O (M = Mo, W) stretching modes in the (MO4)2− tetrahedrons. Photoluminescence of PbMoO4 synthesized from Pb(NO3)2 and of PbWO4 synthesized from PbCl2 showed the strongest blue emission due to the electronic diffusion in tetrahedrons at room temperature.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yong-Fang Li ◽  
Ming Zhang ◽  
Qi-Jing Yang ◽  
Feng-Xian Zhang ◽  
Mei-Qi Zheng ◽  
...  

A simple and facile approach was developed in the solvothermal synthesis of hierarchical PbS microstars with multidendritic arms, which were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and photoluminescence (PL) spectroscopy. The morphologies of PbS products were strongly determined by the reaction time and temperature, the ratios of the precursors, and the mixed solvent with various components, and thereby their possible formation mechanism was discussed in some detail. The as-prepared PbS crystals displayed a sharp and strong photoluminescent peak at 437 nm at room temperature. It has potential and practical applications in photoluminescence, photovoltaics, IR photodetectors, electroluminescence, and solar absorbers.


2013 ◽  
Vol 27 (29) ◽  
pp. 1350211 ◽  
Author(s):  
ARBAB MOHAMMAD TOUFIQ ◽  
FENGPING WANG ◽  
QURAT-UL-AIN JAVED ◽  
QUANSHUI LI ◽  
YAN LI

In this paper, single crystalline tetragonal MnO 2 nanorods have been synthesized by a simple hydrothermal method using MnSO 4⋅ H 2 O and Na 2 S 2 O 8 as precursors. The crystalline phase, morphology, particle sizes and component of the as-prepared nanomaterial were characterized by employing X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDS). The photoluminescence (PL) emission spectrum of MnO 2 nanorods at room temperature exhibited a strong ultraviolet (UV) emission band at 380 nm, a prominent blue emission peak at 453 nm as well as a weak defect related green emission at 553 nm. Magnetization (M) as a function of applied magnetic field (H) curve showed that MnO 2 nanowires exhibited a superparamagnetic behavior at room temperature which shows the promise of synthesized MnO 2 nanorods for applications in ferrofluids and the contrast agents for magnetic resonance imaging. The magnetization versus temperature curve of the as-obtained MnO 2 nanorods shows that the Néel transition temperature is 94 K.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2005 ◽  
Vol 20 (3) ◽  
pp. 563-566 ◽  
Author(s):  
Tetsuji Saito ◽  
Hiroyuku Takeishi ◽  
Noboru Nakayama

We report a new compression shearing method for the production of bulk amorphous materials. In this study, amorphous Nd–Fe–B melt-spun ribbons were successfully consolidated into bulk form at room temperature by the compression shearing method. X-ray diffraction and transmission electron microscopy studies revealed that the amorphous structure was well maintained in the bulk materials. The resultant bulk materials exhibited the same magnetic properties as the original amorphous Nd–Fe–B materials.


2021 ◽  
Vol 66 ◽  
pp. 61-71
Author(s):  
Tahereh Heidarzadeh ◽  
Navabeh Nami ◽  
Daryoush Zareyee

The principal aim of this research is using biosynthesized ZnO-CaO nanoparticles (NPs) for preparation of indole derivatives. ZnO-CaO NPs have been prepared using Zn(CH3COO)2 and eggshell waste powder in solvent-free conditions. Morphology and structure of NPs were determined by FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive spectra (EDS). It was used as a highly efficient catalyst for the synthesis of indole derivatives. Some indole derivatives were synthesized by the reaction of indole, formaldehyde, aromatic and aliphatic amines in the presence of ZnO-CaO NPs (5 mol%) in ethanol under reflux conditions. The assigned structure was further established by CHN analyses, NMR, and FT-IR spectra. Because of excellent capacity, the exceedingly simple workup and good yield, eco-friendly catalyst ZnO-CaO NPs were proved to be a good catalyst for this reaction.


1999 ◽  
Vol 562 ◽  
Author(s):  
Michelle Chen ◽  
Suraj Rengarajan ◽  
Peter Hey ◽  
Yezdi Dordi ◽  
Hong Zhang ◽  
...  

ABSTRACTSelf-annealing properties of electroplated and sputtered copper films at room temperature were investigated in this study, in particular, the effect of copper film thickness, electrolyte systems used, as well as their level of organic additives for electroplating. Real-time grain growth was observed by transmission electron microscopy. Sheet resistance and X-ray diffraction measurements further confirmed the recrystallization of the electroplated copper film with time. The recrystallization of electroplated films was then compared with that of sputtered copper films.


2015 ◽  
Vol 33 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Atieh Aliakbari ◽  
Majid Seifi ◽  
Sharareh Mirzaee ◽  
Hoda Hekmatara

AbstractIn the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM). The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.


2019 ◽  
Vol 9 (22) ◽  
pp. 4878 ◽  
Author(s):  
Jae-Hun Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Hong Joo Kim ◽  
Phan Quoc Vuong ◽  
...  

X-Ray radiation sensors that work at room temperature are in demand. In this study, a novel, low-cost real-time X-ray radiation sensor based on SnO2 nanowires (NWs) was designed and tested. Networked SnO2 NWs were produced via the vapor–liquid–solid technique. X-ray diffraction (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscopy (SEM) analyses were used to explore the crystallinity and morphology of synthesized SnO2 NWs. The fabricated sensor was exposed to X-rays (80 kV, 0.0–2.00 mA) and the leakage current variations were recorded at room temperature. The SnO2 NWs sensor showed a high and relatively linear response with respect to the X-ray intensity. The X-ray sensing results show the potential of networked SnO2 NWs as novel X-ray sensors.


Sign in / Sign up

Export Citation Format

Share Document