scholarly journals Synthesis, characterization and photovoltaic properties of Mn-doped Sb2S3 thin film

2018 ◽  
Vol 35 (4) ◽  
pp. 861-867 ◽  
Author(s):  
Sabit Horoz ◽  
Omer Sahin

Abstract Synthesis and characterization of Mn-doped Sb2S3 thin films (TFs) prepared by chemical bath deposition (CBD) at room temperature have been documented and their structural, optical, morphological, magnetic and photovoltaic properties have been examined for the first time. Their structural properties reveal that the Mn-doped Sb2S3 TF has an orthorhombic phase structure of Sb2S3, and that the grain size of the Mn-doped Sb2S3 TF (72.9 nm) becomes larger than that of undoped Sb2S3 TF (69.3 nm). It has been observed that Mn content causes the Sb2S3 TF band gap to decrease. This situation clearly correlates with band tailing due to the impurities that are involved. The morphological properties have revealed that the shape of the Mn-doped Sb2S3 TF is more uniform than the shape of its undoped counterpart. The study on its magnetic properties has demonstrated that the Mn-doped Sb2S3 TF exhibits paramagnetic behavior. Its paramagnetic Curie-Weiss temperature was found to be -4.1 K. This result suggests that there is an anti-ferromagnetic interaction between Mn moments in the Mn-doped Sb2S3 TF. Incident photon to electron conversion efficiency (IPCE) and J-V measurements were also carried out for the Mn-doped Sb2S3 TF for the first time. The results have indicated that the Mn-doped Sb2S3 TF can be utilized as a sensitizer to improve the performance of solar cells. Another important observation on the photovoltaic properties of Mn-doped Sb2S3 TF is that the spectral response range is wider than that of undoped Sb2S3 TF. Our study suggests that the introduction of dopant could serve as an effective means of improving the device performance of solar cells.

2021 ◽  
Vol 9 ◽  
Author(s):  
Francis Kwaku Asiam ◽  
Nguyen Huy Hao ◽  
Ashok Kumar Kaliamurthy ◽  
Hyeong Cheol Kang ◽  
Kicheon Yoo ◽  
...  

The steric shielding offered by sensitizers on semiconducting surfaces as a result of branching in the dyes used offers the less utilization of semiconducting substrate sites during device fabrication in dye-sensitized solar cells (DSSCs). This work proposes a strategy to increase the coverage through the utilization of small molecules which have the ability to penetrate into the sites. The small molecules play the dual role of vacancy filling and sensitization, which can be viewed as an alternative to co-sensitization also. Hence, we show for the first time ever that the co-adsorption of catechol with Z907 as a sensitizer enhances the electron density in the photo-anode by adsorbing on the vacant sites. Catechol was subsequently adsorbed on TiO2 after Z907 as it has a stronger interaction with TiO2 owing to its favorable thermodynamics. The reduced number of vacant sites, suppressed charge recombination, and enhanced spectral response are responsible for the improvement in the PCEs. Quantitatively, both organic and aqueous electrolytes were used and the co-sensitized DSSCs had PCE enhancements of 7.2 and 60%, respectively, compared to the control devices.


2017 ◽  
Vol 46 (5) ◽  
pp. 393-398 ◽  
Author(s):  
Mozhgan Hosseinnezhad ◽  
Kamaladin Gharanjig

Purpose The purpose of this paper is to study assembling parameters in dye-sensitised solar cells (DSSCs) performance. For this end, 3a,7a-dihydroxy-5ß-cholanic acid (cheno) are selected as anti-aggregation agent and two solutions, namely, tetrabutyl ammonium iodide and (PMII)IL used as electrolyte. Design/methodology/approach A series of organic dyes were selected using N-substituents carbazole as electron donor group and acrylic acid and cyanoacrylic acid as electron acceptor groups. Absorption properties of purified dyes were studied in solution and on photoelectrode substrate. DSSCs were prepared in the presence of anti-aggregation agent and different electrolyte to determine the photovoltaic performance of each dyes. Findings The results showed that all organic dyes form J-aggregation on the photoanode substrate in the absence of anti-aggregation agent and the amounts of aggregation were reduced in the presence of anti-aggregation agent. DSSCs were fabricated in the presence of anti-aggregation agent. The photovoltaic properties were improved using tetrabutyl ammonium iodide as electrolyte. The maximum power conversion efficiency was achieved for D12 in the presence of cheno and tetrabutyl ammonium iodide as anti-aggregation agent and electrolyte, respectively. Social implications Organic dye attracts more and more attention due to low cost, facile route synthesis and less hazardous. Originality/value The effect of anti-aggregation agent and electrolyte on DSSCs performance was investigated for the first time.


2020 ◽  
Author(s):  
Yunqing Cao ◽  
Dong Wu ◽  
Ping Zhu ◽  
Zhaoyun Ge ◽  
Wei Li ◽  
...  

Abstract Recently, many kinds of Si nanostructures have been extensively investigated, in which, Si quantum dot (Si QD) is one of the potential candidates for all-Si tandem solar cells. Because the optical bandgap of Si QDs can be tunable via size controlling, it can match the solar spectrum in a wide range and consequently improve the spectral response. In this work, Si QDs/SiC multilayers with controllable dot sizes were fabricated and characterized. The Raman spectra and transmission electron microscopy (TEM) observation revealed the formation of size-controllable Si QDs. The absorption measurement showed that the bandgap of Si QDs was red shifted to the long wavelength range with the dot size increasing, which agrees well with the quantum confinement effect. Moreover, heterojunction solar cells containing different sized-Si QDs/SiC multilayers were proposed and investigated. The solar cells exhibited strong size-dependent photovoltaic properties and the best cell had the power conversion efficiency (PCE) of 7.27%. Furthermore, the external quantum efficiency (EQE) measurement demonstrated the Si QDs contribution of light absorption and response in ultraviolet-visible range, which provides a promising way to realize better spectral match by applying different sized-Si QDs in the future photovoltaic devices.


1996 ◽  
Vol 426 ◽  
Author(s):  
B. Jagannathan ◽  
W. A. Anderson

AbstractThe photovoltaic (PV) properties of undoped amorphous silicon (a-Si)/ p-type crystalline silicon (c-Si) solar cells were found to improve by a hydrofluoric acid treatment of c-Si just prior to glow discharge deposition of a-Si. The short circuit current density (Jsc) improved from 2.7 to 23.5 mA/cm2 for an 0.1 μm thick a-Si layer. This also resulted in an improved spectral response of the solar cell in the violet region of the spectrum. The enhanced properties have been attributed to the improved carrier transport across the interface, as seen in the current-voltage-temperature relationships, and also PC-1D simulation of the devices. Solar cells of a similar type were also fabricated by dc magnetron sputtering of the a-Si layer. HF passivated cells (area ∼ 0.24 cm2) yielded about 9.5 % efficiency with Jsc of 30 mA/cm2 and a FF of 0.6, without use of an A/R coating. The variation of the PV properties of these cells was investigated as a function of a-Si thickness and c-Si doping.


Nanoscale ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 6871-6883
Author(s):  
Jianming Wang ◽  
Huangzhong Yu ◽  
Chunli Hou

Herein, few-layered β-InSe nanosheets are introduced into the active layers of polymer solar cells as morphological modifiers for the first time. 


Author(s):  
Ping Hou ◽  
Wenxiang Yang ◽  
Ning Wan ◽  
Zhi Fang ◽  
Jinju Zheng ◽  
...  

We report a facile BiBr3(DMSO)2 adduct process to produce high-quality Cs2AgBiBr6 films with large grains for the first time, which leads to an enhancement of over 40% on the PCE of Cs2AgBiBr6-based solar cells compared to that of the control sample.


Solar Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 473-478 ◽  
Author(s):  
Fan Sui ◽  
Mingyue Pan ◽  
Zhengyan Wang ◽  
Ming Chen ◽  
Wenjie Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document