scholarly journals Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach

Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 921-929 ◽  
Author(s):  
Min Liu ◽  
Fanfan Lu ◽  
Wending Zhang ◽  
Ligang Huang ◽  
Shuhai Liang ◽  
...  

AbstractTip-based plasmonic nanofocusing, which delivers light into a nanoscale region and achieves localized electromagnetic (EM) field enhancement beyond the diffraction limit, is highly desired for light-matter interaction-based super-resolution imaging. Here, we present the plasmonic nanofocusing at the apex of a silver (Ag)-coated fiber tip with the internal illumination of a radial vector mode (RVM) generated directly in an optical fiber based on an acoustically-induced fiber grating (AIFG). As illustrated by theoretical calculation, a picture of the nanofocusing plasmonic tip given by analyzing the mode conversion process that the surface plasmon polariton (SPP) mode excited via the radial polarization optical mode can propagate to the apex of the plasmonic tip for nanofocusing because it is not cut off as the tip radius decreases; while the SPP mode which transited from the linear polarization optical mode cannot propagate to the tip apex for nanofocusing because it is cut off as the tip radius decreases. The electric field intensity enhancement factor $|{\rm{E}}_{{\rm{apex}}}^{\rm{2}}|/|{\rm{E}}_{{\rm{input}}}^{\rm{2}}|$ of a plasmonic tip with a tip radius of 20 nm was calculated to be ~2 × 103. Furthermore, the electric field enhancement characteristic at the tip apex was also experimentally verified by using surface-enhanced Raman spectroscopy (SERS). The Raman scattering intensity was observed to be ~15 times as strong as that with internal illumination using the linear polarization mode (LPM), revealing their significantly different nanofocusing characteristics. A Raman sensitivity of 10−14m was achieved for the target analyte of malachite green (MG), denoting significant electric field enhancement and effective plasmonic nanofocusing. The energy conversion efficiency of the radial polarization optical mode to the corresponding SPP mode at the tip apex was measured to be ~17%. This light delivery technique can be potentially further exploited in near-field microscopy with improved resolution and conversion efficiency.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bao-xin Yan ◽  
Yan-ying Zhu ◽  
Yong Wei ◽  
Huan Pei

AbstractIn this paper, the surface enhanced Raman scattering (SERS) characteristics of Au and Au@Al2O3 nanoparticle dimers were calculated and analyzed by using finite element method (3D-FEM). Firstly, the electric field enhancement factors of Au nanoparticles at the dimer gap were optimized from three aspects: the incident angle of the incident light, the radius of nanoparticle and the distance of the dimer. Then, aluminum oxide is wrapped on the Au dimer. What is different from the previous simulation is that Al2O3 shell and Au core are regarded as a whole and the total radius of Au@Al2O3 dimer is controlled to remain unchanged. By comparing the distance of Au nucleus between Au and Au@Al2O3 dimer, it is found that the electric field enhancement factor of Au@Al2O3 dimer is much greater than that of Au dimer with the increase of Al2O3 thickness. The peak of electric field of Au@Al2O3 dimer moves towards the middle of the resonance peak of the two materials, and it is more concentrated than that of the Au dimer. The maximum electric field enhancement factor 583 is reached at the shell thickness of 1 nm. Our results provide a theoretical reference for the design of SERS substrate and the extension of the research scope.


2020 ◽  
Vol 10 (7) ◽  
pp. 1704
Author(s):  
Desalegn T. Debu ◽  
Qigeng Yan ◽  
Ahmad Aziz Darweesh ◽  
Mourad Benamara ◽  
Gregory Salamo

2020 ◽  
Vol 28 (17) ◽  
pp. 24389 ◽  
Author(s):  
Matthias Runge ◽  
Dieter Engel ◽  
Michael Schneider ◽  
Klaus Reimann ◽  
Michael Woerner ◽  
...  

2006 ◽  
Vol 19 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Alenka Milovanovic

In this paper using Equivalent Electrode Method (EEM) Atmospheric Electric Field (AEF) distribution in the vicinity of the cargo vehicle is approximately numerically determined, when the vehicles are situated on petrol station near by petrol pump and people. The petrol pump is always grounded, but human body and vehicle are treated as grounded or 'floating' electrodes. Several results of electric field enhancement factor for the vehicle including maps of equienergetic curves are presented.


2018 ◽  
Vol 26 (23) ◽  
pp. 30851 ◽  
Author(s):  
Qijing Lu ◽  
Xiaogang Chen ◽  
Chang-Ling Zou ◽  
Shusen Xie

Author(s):  
Xi Zhang ◽  
Wenyuan Wu ◽  
Yanchun Gong ◽  
Suhong He ◽  
Fangping Wu ◽  
...  

Abstract The nonlocal effects of dimers consisted of two cylinders are studied, whose cross section is elliptical. Importantly, the results with dimers whose cross section is circular are compared. For comparison, the curvature of the ellipse is set the same with the circle, and four different geometries are considered. The electric field enhancement at the gap center and the absorption spectrum of the dimers are calculated. For the second geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the first geometry, the frequencies corresponding to the peaks are totally different. Similarly, for the fourth geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the third geometry, the disciplines of the peak values change as radius of curvature increases are totally different.


Sign in / Sign up

Export Citation Format

Share Document