Discussion of the case of the missing heat

2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Albert Parker

AbstractThe sea level projection of a 1 meter rise for the 21st century depends on climate models that have projected a given amount of anthropogenic warming during the same period. However, these same climate models predicted a warming also from 2000 to 2014, which has not been seen in the global surface temperature. Researchers have proposed several solutions such as the fact that the “missing heat” was accumulated in the deep ocean. However, no evidences of a sufficient warming of the deep oceans have been observed. Other arguments has been proposed as well and found unsatisfactory. There is the opportunity that the “heat” is not “real” but “missing” or “hiding” somewhere. If the climate model projected “heat” that simply does not exist in reality in the first place, consequently the models overestimate the anthropogenicwarming and also the sea level projections for the 21st century are overestimated.

2016 ◽  
Vol 43 (16) ◽  
pp. 8662-8669 ◽  
Author(s):  
Cheryl E. Peyser ◽  
Jianjun Yin ◽  
Felix W. Landerer ◽  
Julia E. Cole

Author(s):  
K. E. Muryshev ◽  
A. V. Eliseev ◽  
S. N. Denisov ◽  
M. M. Arzhanov ◽  
A. V. Timazhev

The phase shift between changes in the global surface temperature Tg and atmospheric CO2 content has been shown earlier not to characterize causal relationships in the Earth system in the general case. Specifically, the sign of this phase shift under nongreenhouse radiative forcing changes depends on the time scale of this forcing. This paper analyzes the phase shift between changes in the global surface temperature Tg and the atmospheric CO2 content qCO2 under synchronous external emissions of carbon dioxide and methane into the atmosphere on the basis of numerical experiments with the IAP RAS climatic model and a conceptual climate model with carbon cycle. For a sufficiently large time scale of external forcing, the changes in qCO2 lag relative to the corresponding changes in Tg.


2011 ◽  
Vol 2 (2) ◽  
pp. 467-491 ◽  
Author(s):  
A. Jarvis

Abstract. Because of the fundamental role feedbacks play in determining the characteristics of climate it is important we are able to specify both the magnitude and response timescale of the feedbacks we are interested in. This paper employs three different climate models driven to equilibrium with a 4 × CO2 forcing to analyze the magnitude and timescales of surface temperature feedbacks. These models are a global energy balance model, an intermediate complexity climate model and a general circulation model. Rather than split surface temperature feedback into characteristic physical processes, this paper adopts a linear systems approach to split feedback according to their time constants and corresponding feedback amplitudes. The analysis reveals that there is a dominant net negative feedback realised during the first year. However, this is partially attenuated by a spectrum of positive feedbacks for time constants in the range 10 to 1000 years. This attenuation was composed of two discrete phases which are attributed to the effects of ''diffusive – mixed layer'' and ''circulatory – deep ocean'' ocean heat equilibration processes. The diffusive equilibration was associated with time constants on the decadal timescale and accounted for approximately 75 to 80 % of the overall ocean heat equilibration feedback, whilst the circulatory feedback operated on a centennial timescale and accounted for the remaining 20 to 25 % of the response. It is important to quantify these decadal and centennial feedback processes to understand the range of climate model projections on these longer timescales.


2020 ◽  
pp. 1-2
Author(s):  
Tiziana Susca

The year 1950 has been a tipping point for Europe, as most of the European population became more urban than rural. Since that moment such a transition never stopped, and, projections say that by 2050, the number of urban inhabitants will approximately reach 75% of the total population in Europe, likely imposing further urban sprawl in one of the already most urbanized regions worldwide. As cities are responsible for 75% of the global carbon dioxide emissions, a questionabout how cities are dealing with climate change raises. Climate change threatens cities in numerous ways and at different scales. For instance, urbanization entails local increase in urban temperature, compared to the rural environs, known as Urban HeatIsland (UHI) effect. Both big and small-sized European cities are experiencing UHI. Previous research shows that in Paris, Rome and Barcelona, the UHI is as high as 8, 5 and 8.2 °C, respectively. In addition to urban and microscale temperature surges, anthropogenicclimate change has amplifiedthe intensity and frequency of mesoscale warming phenomena: heat waves. Particularly relevant have been the heat waves recorded in 2003, 2006, 2007, 2010, 2014, 2015 and 2017. In Europe, from June to August 2003, the heat wave caused about 35000 deaths. In 2018, persistent high temperature anomalies were recorded in Europe, and in particular in Scandinavia and Northern Europe. Most important, estimates show that mesoscale warming phenomena will become more frequent in the coming years. On top of these warming phenomena, global land-ocean temperatures are continuing increasing in the last decades. In 2017 the global surface temperature resulted being 0.9 °C higher than the average global surface temperature relative to 1951-1980. The increase in global temperature entails the ice cap melting which causes sea level rise. At present, globally, sea level is 89.7 mm (±0.80 mm) higher than in 1993. In particular, in Europe, both northern European countries and Mediterraneanones, have experienced, in the last 45 years a sea level rise ranging from 0.5 to 3 and from 0.5 to 4 mmper year, respectively. Projections show that, in the coming years, both Northern and Southern European countries will be affected by an increase in the sea level ranging from 0.1 to >0.4 m. As sea level is projected to rise in the coming years, coastal cities—which represent 90% of urban areas globally—will likely be threatened by flooding. Without adaptation strategies, the number of people in Europe annually affected by coastal flooding will be about 0.05 -0.13% of the 27 EU population in 2010. In particular, the Netherlands is ranked among the 20 most exposed countries worldwideto flooding, with potential economic loss of approximately US $1670 billion. Although climate change is a well-known phenomenon—already in 1988 Dr. James Hansen predicted that the increase in greenhouse gases would have led in 2017 to an increase in global temperature of about 1.03 °C compared to the average temperature recorded from 1950 until1980—the global greenhouse gas emissions continue rising, showing that climate negotiations are either still gridlocked or not sufficient to decrease climate altering emissions. If, on the one handinternational negotiations are slow,on the other hand, cities, especially in the last years, are proactivelyimplementingadaptationand mitigation plans. 66% of the European cities have adopted adaptation or mitigation plans. In the list of the top 5 countries with the highest percentage of cities with mitigation or adaptation plans there are Poland, Germany, Ireland, Finland, and Sweden. However, such plans are compulsory just in a minority of countries (i.e., Denmark, France, Slovakia and the UK). As international climate change negotiations fail in addressing climate urgency, as demonstrated by COP24 held in Katowice (Poland) on December 2018, cities, which are among the major causes and the main victims of climate change, have demonstratedto own the right political agility to put in place efficient mitigation and adaptation urban plans. However, as isolated actions would not lead to any measurable global effect, just coordinated efforts, harmonized either at upper scales or among municipalities globally, can provide global mitigation benefits.


2017 ◽  
Vol 13 (8) ◽  
pp. 1037-1048 ◽  
Author(s):  
Henrik Carlson ◽  
Rodrigo Caballero

Abstract. Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Huai-Min Zhang ◽  
Jay Lawrimore ◽  
Boyin Huang ◽  
Matthew Menne ◽  
Xungang Yin ◽  
...  

The latest version of NOAA’s Global Surface Temperature Dataset improves coverage over land and sea and improves the treatment of historical changes in observational practices.


Sign in / Sign up

Export Citation Format

Share Document