scholarly journals Study on vibration monitoring and anti-vibration of overhead transmission line

2021 ◽  
Vol 10 (1) ◽  
pp. 395-403
Author(s):  
Weihua Yin ◽  
Li Lin

Abstract Numerous forms of dampers are used to eliminate the vibrations in transmission lines. In the contemporaneous editorial, a survey has been done on vibrations monitoring and anti-vibration of overhead transmission line of transmission lines having multiple dampers for dissimilar cable sizes. To investigate the outcome of the position of dampers on extreme strains created in the line. A comprehensive survey of the extreme strains created is also made for several wind power input conventions. A finite element technique is used to measure the frequency and manner figures of the cable with and without a damper. The response of the bare conductor, loaded conductor, the conductor for various dampers’ location is also studied. Spoilers and torsional dampers are maximum actual in diminishing electrode galloping, while dampers are quite the utmost effectual plans for aeolian shakings and spiral dampers are admirable for identical lesser width of electrodes.

2013 ◽  
Vol 313-314 ◽  
pp. 809-812
Author(s):  
Ke Ju Xu ◽  
Lei Yang ◽  
Da Da Wang ◽  
Chao Zhou ◽  
Shao Quan Zhang ◽  
...  

With large-scale development of ultra high-transmission network, the structure of transmission line-towers system tends to the tower higher, the cross-section of transmission lines larger and span between towers longer. As the increasing of transmission lines voltage grade, transmission line-towers system has higher requirements on static and dynamic stability. It is difficult for traditional design method to meet the demands of new transmission line-towers, not to mention shorten the design cycle, improve design quality. In this paper, we establish overhead transmission line-towers system model based on parameterized finite element method, by gradually increasing the thickness of the icing, iced load, wind load, weight, mechanical properties under the action of the load and the conductor tension. The analysis results show that the model can effectively reflect the mechanical properties of the transmission towers, and improve the quality of the design, greatly shortening the design cycle.


2012 ◽  
Vol 610-613 ◽  
pp. 2813-2818
Author(s):  
Xian Long Lu ◽  
Zeng Zhen Qian

This paper presents the concept and the fundamental issues and the development on the environmental geotechnology in transmission lines foundation engineering. Namely, environmental geotechnology and theory is to study the restriction effects of environment on the transmission line routes, foundation selection and reliability, to predict the results of transmission line foundation construction on the environment, and to study on countermeasures of environmental protection in transmission foundation engineering. And then, from the above three aspects, the design method combined strength and displacement for tower foundation, the selection on foundation types and technical scheme for transmission line tower, and the countermeasures for soil and water conservation, the author introduces the development and practice of environmental geotechnology for transmission lines foundation engineering in China.


1978 ◽  
Vol 100 (1) ◽  
pp. 31-36 ◽  
Author(s):  
E. I. Odell

Wall ironing has been analyzed using an elastic-plastic finite element technique. The effects that the ironing ring semi-cone angle and friction have on the maximum reduction ratio are studied in detail. Stress contours are given for a typical set of operating parameters. Several ram load/displacement curves are provided and compared with upper and lower bound loads.


1974 ◽  
Vol 41 (2) ◽  
pp. 355-359 ◽  
Author(s):  
J. L. Hill ◽  
C. G. Davis

The effect of initial forces on the vibration and stability of curved, clamped, fluid conveying tubes is analyzed by the finite-element technique. The tubes are initially planar with general center-line shapes approximated by constant curvature arcs. The effect of internal pressure is included. Numerical results are presented with, and without, the effects of the initial in-plane forces, for circular arcs S, L, and spiral configurations. Neglecting initial forces results in out-of-plane buckling, while including these forces prevents buckling within the elastic limit, in all configurations studied.


2020 ◽  
Vol 4 (2) ◽  
pp. 127-138
Author(s):  
Ismael Saeed ◽  
Kamal Sheikhyounis

The modeling and calculation of a single phase-to-earth fault of 6 to 35 kV have specific features when compared with circuits with higher nominal voltages. In this paper, a mathematical analysis and modeling of a 3-phase overhead transmission line with distributed parameters consisting of several nominal T-shaped, 3-phase links with concentrated parameters replaced by 1 nominal T-shaped link were carried out. Further analysis showed that not accounting for the distributed nature of the line parameters did not cause significant errors in the assessment of the maximum overvoltage in the arc suppression in single phase-to-earth faults, and that sufficient accuracy insures the representation of the line by only 1 nominal T-shaped, 3-phase link. Such a modeling technique makes it impossible to identify the location of single-phase faults, which is the property of higher harmonic amplification of individual frequencies. Chain equivalent schemas with constant parameters are valid for a single frequency, thereby providing an opportunity to study the nature of the wave process by the discrete selection of parameters. Next in the mathematical representation, we consider the overhead transmission lines as lines with distributed parameters.


Sign in / Sign up

Export Citation Format

Share Document