scholarly journals On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid

2021 ◽  
Vol 10 (1) ◽  
pp. 1339-1348
Author(s):  
Li Sun ◽  
Geng Wang ◽  
Chunwei Zhang ◽  
Qiao Jin ◽  
Yansheng Song

Abstract This study examines the rheological properties of shear thickening fluid (STF) enhanced by additives such as multi-walled carbon nanotubes (MWCNTs), polyvinylpyrrolidone (PVP), and nano-silica (SiO2) at different mass fraction ratios. The rheological properties of the liquid (MWCNTs–PVP/SiO2–STF) and the effect of the rheological properties of the STF under different plate spacing of the rheometer were investigated. The optimal mass fraction mixing ratio was also studied. The MWCNTs–PVP/SiO2–STF system with different PVP mass fractions was fabricated using ultrasonic technology and the mechanical stirring method. Then, the steady-state rheological test of the MWCNTs–PVP/SiO2–STF system was carried out with the aid of the rheometer facility. Dynamic rheological and temperature sensitivity tests on the MWCNTs–PVP/SiO2–STF system with 0.1 and 0.15% PVP mass fractions were performed. The rheological test results show that the MWCNTs–PVP/SiO2–STF system has a significant shear thickening effect when the PVP mass fraction is increased from 0 to 0.15%. When the PVP mass fraction is 0.1% and the plate spacing is 1 mm, the system exhibits the best shear thickening performance. This is based on the following facts: the viscosity can be achieved as 216.75 Pa s; the maximum energy storage and energy consumption capabilities can be observed. As a result, PVP can significantly enhance the shear thickening performance of the MWCNTs/SiO2–STF system.

2017 ◽  
Vol 7 ◽  
pp. 3369-3372 ◽  
Author(s):  
Jianhao Ge ◽  
Zhuhua Tan ◽  
Weihua Li ◽  
Hang Zhang

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1356 ◽  
Author(s):  
Danyang Li ◽  
Rui Wang ◽  
Xing Liu ◽  
Shu Fang ◽  
Yanli Sun

The excellent mechanical property and light weight of protective materials are vital for practical application in body armor. In this study, O2-plasma-modified multi-walled carbon nanotubes (M-MWNTs) were introduced into shear-thickening fluid (STF)-impregnated Kevlar woven fabrics to increase the quasi-static stab resistance and decrease the composite weight. The rheological test showed that the addition of 0.06 wt. % M-MWNT caused a marked increase in the peak viscosity from 1563 to 3417 pa·s and a decrease in the critical shear rate from 14.68 s−1 to 2.53 s−1. The storage modulus (G′) and loss modulus (G″) showed a higher degree of abrupt increase with the increase of shear stress. The yarn pull-out test showed that the yarn friction of M-MWNT/STF/Kevlar fabrics was far superior to the original fabrics. Importantly, under similar areal density, the M-MWNT/STF/Kevlar fabrics could resist 1261.4 N quasi-static stab force and absorb 41.3 J energy, which were much higher than neat Kevlar fabrics. The results of this research indicated that quasi-static stab resistance was improved by M-MWNTs, which was attributed to the excellent shear-thickening effect and the high yarn friction. Therefore, M-MWNT/STF/Kevlar fabrics have a broad prospect in the fields of body protection.


2019 ◽  
Vol 50 (3) ◽  
pp. 380-397
Author(s):  
Ting-Ting Li ◽  
Xixi Cen ◽  
Haokai Peng ◽  
Haitao Ren ◽  
Lianhe Han ◽  
...  

Terrorist attacks occur constantly, which subsequently arouses awareness of self-protection. In order to alleviate the harm caused by sharp objects of knives and daggers, a design of flexible stab-resistant materials that are impregnated with the shear thickening fluid (STF)/multi-walled carbon nanotubes (MWCNTs) system and different texture of fabrics is presented. STF/MWCNTs are composed of polyethylene glycol (PEG 200) as the dispersion medium and silica (SiO2) of 12 nm and 75 nm as disperse phase as well as MWCNTs as supplementary reinforcement, in expectation to provide the aramid fabrics with high strengths, low critical shear rate, and a short thickening response time. The textures of aramid fabrics—plain (P), twill (T), satin (S), or basket (B) weave—are saturated in the STF/MWCNTs system. The synergetic influences of silica size and texture on tensile strength, quasi-static knife, and spike stab resistances of the STF/MWCNTs-impregnated aramid fabrics are examined. Results show that the plain aramid fabric immersed in the STF/MWCNTs system containing 12 nm SiO2(SM12) exhibit the maximum tensile strength and quasi-static knife stab resistance, 14.7 MPa and 8.9 MPa, respectively, which is 1.15 and 1.43 times higher than pure aramid fabrics. Moreover, the basket-weave aramid fabric immersed in the STF/MWCNTs system containing 12 nm SiO2have the maximum quasi-static spike stab resistance of 17.12 MPa compared to other textures of fabrics, which is 1.05 times higher than those immersed in the 75 nm SiO2STF/MWCNTs (SM75) system and 1.33 times higher than that of pure basket aramid fabrics.


2018 ◽  
Vol 5 (5) ◽  
pp. 055705 ◽  
Author(s):  
Li Sun ◽  
Jie Zhu ◽  
Minghai Wei ◽  
Chunwei Zhang ◽  
Yansheng Song ◽  
...  

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 169
Author(s):  
Gintautas Skripkiunas ◽  
Ekaterina Karpova ◽  
Joana Bendoraitiene ◽  
Irmantas Barauskas

In this study, the rheological properties of cement paste modified by a suspension containing both multi-walled carbon nanotubes (MWCNT) and carboxymethyl cellulose (CMC) (MWCNT/CMC suspension) with different types of plasticising admixtures (Pl), such as lignosulphonate (LS), sulfonated naphthalene formaldehyde condensate (NF), and polycarboxylate ether (PCE) were evaluated. The increase in yield stress and plastic viscosity up to 20% was established in the case of the modification of cement-based mixtures by MWCNT in the dosage up to 0.24% by weight of cement (bwoc) without Pl and with LS and NF. The complex modification of cement paste by MWCNT and PCE increases the yield stress and plastic viscosity from the MWCNT dosage of 0.06% and 0.015% bwoc, respectively. The yield stress and plastic viscosity of cement paste with PCE enhanced by 265% and 107%, respectively, in a MWCNT dosage of 0.12% bwoc. MWCNT do not have a significant influence on the flow behaviour index of cement paste; however, in the case of usage of PCE, the shear thickening effect decreased from a MWCNT dosage of 0.03% bwoc. The significant reduction in the volume coefficient of water bleeding by 99, 100, and 83% was obtained with LS, NF, and PCE, respectively, with an increase in MWCNT dosage up to 0.24% bwoc.


2020 ◽  
Vol 86 (12) ◽  
pp. 15-22
Author(s):  
N. A. Bulayev ◽  
E. V. Chukhlantseva ◽  
O. V. Starovoytova ◽  
A. A. Tarasenko

The content of uranium and plutonium is the main characteristic of mixed uranium-plutonium oxide fuel, which is strictly controlled and has a very narrow range of the permissible values. We focused on developing a technique for measuring mass fractions of uranium and plutonium by controlled potential coulometry using a coulometric unit UPK-19 in set with a R-40Kh potentiostat-galvanostat. Under conditions of sealed enclosures, a special design of the support stand which minimized the effect of fluctuations in ambient conditions on the signal stability was developed. Optimal conditions for coulometric determination of plutonium and uranium mass fractions were specified. The sulfuric acid solution with a molar concentration of 0.5 mol/dm3 was used as a medium. Lead ions were introduced into the background electrolyte to decrease the minimum voltage of hydrogen reduction to –190 mV. The addition of aluminum nitride reduced the effect of fluoride ions participating as a catalyst in dissolving MOX fuel samples, and the interfering effect of nitrite ions was eliminated by introducing a sulfamic acid solution into the cell. The total content of uranium and plutonium was determined by evaluation of the amount of electricity consumed at the stage of uranium and plutonium co-oxidation. Plutonium content was measured at the potentials, at which uranium remains in the stable state, which makes it possible to subtract the contribution of plutonium oxidation current from the total oxidation current. The error characteristics of the developed measurement technique were evaluated using the standard sample method and the real MOX fuel pellets. The error limits match the requirements set out in the specifications for MOX fuel. The technique for measuring mass fractions of uranium and plutonium in uranium-plutonium oxide nuclear fuel was certified. The relative measurement error of the mass fraction of plutonium and uranium was ±0.0070 and ±0.0095, respectively. The relative error of the ratio of the plutonium mass fraction to the sum of mass fractions of uranium and plutonium was ±0.0085.


Sign in / Sign up

Export Citation Format

Share Document