scholarly journals Assessing yield stability in African yam bean (Sphenostylis stenocarpa) performance using year effect

2020 ◽  
Vol 5 (1) ◽  
pp. 202-212
Author(s):  
Charity Aremu ◽  
Sunday A. Ige ◽  
Dolapo Ibirinde ◽  
Ibrahim Raji ◽  
Stephen Abolusoro ◽  
...  

AbstractMaintaining yield stability in the African yam bean (AYB) (Sphenostylis stenocarpa) under year-to-year variability is crucial to its sustained productivity. Exploring yield stability in crops is vital in identifying how stable and consistent the yield of such crops is. Cultivation of AYB, an underutilized traditional legume in a specific environment, will further popularize the crop and enhance the acceptance as a cheap protein source thereby reducing hunger and malnutrition especially in regions where climate change has negatively affected legume crop production. Field trials were carried out to study the performance of 23 AYB genotypes in four-year environments. Two seeds of each genotype were sown in a single 5 m row plot spaced at 1 m between and within rows; the trial was conducted during the cropping season of 2011, 2012, 2013, and 2014 and was laid out in a randomized complete block design (RCBD) with three replications. At harvesting, five plants from each row were separately harvested; seeds of all the sampled plants in each plot were bulked and weighed, and the seed yield per plant was then determined. A combined analysis of variance (ANOVA) was performed to test for the significance of genotypes, year, and genotype by year interaction. Before combined ANOVA, a test for homogeneity of residual variances was performed using Bartlet’s test; stability of the genotypes over the years was ascertained numerically and graphically using additive main effects and multiplicative interaction and Genotype X Genotype X Environment interaction (GGE) biplot analyses. Rainfall distribution between 680 and 1,700 mm with an average temperature of 28.50°C under sandy-clay soil type supported high and stable seed yield production in AYB. This environment was found adequate during the 2014 (E1) growing season. Genotypes TSs118, TSs12, TSs109, TSs148, TSs5, TSs61, and TSs69 produced an above-average mean yield across the years and were found to be productive and stable in all the year environments. TSs82 and TSs6 with above-average mean seed and tuber yield can be considered for cultivation where seed and tuber dual-purpose production is to be maximized, while TSs111, TSs49, and TSs96 with high tuber yield ranking above average total tuber yield can be further enhanced for tuber production.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Joseph Adjebeng-Danquah ◽  
Kwabena Acheremu ◽  
Emmanuel Boachie Chamba ◽  
Freda Ansaah Agyapong ◽  
Alhassan Sayibu

Studies were conducted to determine tuber yield stability and adaptability of some elite yam (Dioscorea sp.) genotypes in northern Ghana. Ten elite exotic yam genotypes alongside one locally cultivated farmer-preferred variety, Laribako, were grown in five environments between 2010 and 2012. These 11 genotypes were arranged in a randomised complete block design with three replications and assessed for tuber yield and yield components. Analysis of variance indicated significant p < 0.05 genotypic variation for tuber yield and the yield components studied. Genotype × environment interaction effect was significant p < 0.05 for tuber yield and mean tuber weight but not significant p > 0.05 for number of tubers per mound. Apart from genotype 95/18922, all the exotic genotypes had significantly p < 0.05 higher tuber yields than the local check, Laribako. The highest tuber yield (16.03 t ha−1) across environments was obtained from 96/19158 followed by 95/00594 (14.9 t ha−1). According to the additive main effect multiplicative interaction (AMMI) analysis, genotype (G), environment (E), and GxE interaction, respectively, explained 39.71%, 36.03%, and 24.26% of the total sum of squares for tuber yield. For number of tubers per plant, GxE effect explained the greatest percentage (60.46%) of the total sum of squares compared to genotype effect (22.00%) and environment effect (17.54%). The local variety, Laribako, was more stable across all environments though low yielding compared to the exotic genotypes. Three genotypes, 95/19158, 95/19177, and 96/02025, were more stable across environments than the other exotic genotypes. Genotype 95/18544 was the most sensitive and for that matter responded positively in the favorable environments. The study identified genotypes with specific and general adaptation potential across different environments for tuber yield that can be further tested in on-farm trials for possible release.


2011 ◽  
Vol 46 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Ana Marjanović-Jeromela ◽  
Nevena Nagl ◽  
Jelica Gvozdanović-Varga ◽  
Nikola Hristov ◽  
Ankica Kondić-Špika ◽  
...  

The objective of this study was to assess genotype by environment interaction for seed yield per plant in rapeseed cultivars grown in Northern Serbia by the AMMI (additive main effects and multiplicative interaction) model. The study comprised 19 rapeseed genotypes, analyzed in seven years through field trials arranged in a randomized complete block design, with three replicates. Seed yield per plant of the tested cultivars varied from 1.82 to 19.47 g throughout the seven seasons, with an average of 7.41 g. In the variance analysis, 72.49% of the total yield variation was explained by environment, 7.71% by differences between genotypes, and 19.09% by genotype by environment interaction. On the biplot, cultivars with high yield genetic potential had positive correlation with the seasons with optimal growing conditions, while the cultivars with lower yield potential were correlated to the years with unfavorable conditions. Seed yield per plant is highly influenced by environmental factors, which indicates the adaptability of specific genotypes to specific seasons.


Author(s):  
M. A. Ahmed ◽  
Kh. A. Morad ◽  
M. A. Attia ◽  
Zeinab E. Ghareeb

Aims: This study was conducted to investigate the nature of genotypes-environments interaction (GEI) and identify the most stable sunflower hybrids that can give high seed yield with high oil yield under a wide range of environmental conditions in Egypt. Place and Duration of Study: Fifteen hybrids were evaluated across three years (2017 to 2019) and three locations (Giza, Ettay El-Barod and Shandaweel). Study Design: The experiments were laid out in Randomized Complete Block Design (RCBD) with three replications. Methodology: Analysis of variance, some stability methods as additive main effects and multiplicative interaction (AMMI) and genotype main effects and genotype-by-environment interaction effects (GGE-biplot) were conducted. Results of stability indices were ranked as AMMI Stability Value (ASV), yield stability (YSI) and rank-sum (RSI) and heritability was estimated. Results: Combined analysis revealed that GEI was highly significant, indicating the possibility of selection for stable ones. AMMI analysis confirmed that the seed yield performance of sunflower hybrids was largely influenced by the environment. On the contrary, environments recorded less impact on oil yield as compared to the effect of hybrids (genetics). Then, heritability estimate of oil yield trait (93.86%) was higher than the seed yield one (31.10%). Indices of YSI and RSI presented that hybrids (H15, H7 and H11) and (H7, H8 and H15) were the best stable promising ones in seed and oil yield, respectively. GGE-biplot analysis indicated that hybrids (H15, H7, H4 and H11) and (H7, H15, H8 and H15) were considered as the most ideal for seed and oil yield, respectively whereas Shandweel was the ideal environment for both. Conclusion: Therefore, all analyses agreed on hybrids H15, H7 and H11 were considered as the most desirable and stable ones. These hybrids can be recommended for wider cultivation due to better seed and oil yield with stable performance across the test environments.


2004 ◽  
Vol 52 (2) ◽  
pp. 157-163
Author(s):  
C. U. Egbo ◽  
M. A. Adagba ◽  
D. K. Adedzwa

Field trials were conducted in the wet seasons of 1997 and 1998 at Makurdi, Otukpo and Yandev in the Southern Guinea Savanna ecological zone of Nigeria to study the responses of ten soybean genotypes to intercropping. The experiment was laid out in a randomised complete block design. The genotypes TGX 1807-19F, NCRI-Soy2, Cameroon Late and TGX 1485-1D had the highest grain yield. All the Land Equivalent Ratio (LER) values were higher than unity, indicating that there is great advantage in intercropping maize with soybean. The yield of soybean was positively correlated with the days to 50% flowering, days to maturity, plant height, pods/plant and leaf area, indicating that an improvement in any of these traits will be reflected in an increase in seed yield. There was a significant genotype × yield × location interaction for all traits. This suggests that none of these factors acted independently. Similarly, the genotype × location interaction was more important than the genotype × year interaction for seed yield, indicating that the yield response of the ten soybean genotypes varied across locations rather than across years. Therefore, using more testing sites for evaluation may be more important than the number of years.


Author(s):  
S. O. Olanipekun ◽  
A. O. Togun ◽  
A. K. Adebayo ◽  
F. B. Anjorin

Farmers use Inorganic Fertilizers (IF) to improve kenaf yield in Nigeria. However, the detrimental effects of mineral fertilizers and its high cost calls for the use of organic fertilizers that are locally available and environment friendly. Combination of Organic Fertiliser (OF) with IF may reduce the bulkiness of OF while harnessing the benefit of both for higher yields. Field trials were conducted at Ibadan and Ilora in 2013 and 2014 to investigate the effects of combined fertilizers on the growth and yield of kenaf. Organic and IF (NPK 20:10:10) fertilizers as: (i) 160 kg ha-1 (sole organic), (ii) 100 kg ha-1 (sole IFl), (iii) Organic and IF at 50:50 ratio and (iv) control (no fertilizer). The experiment was laid out in Randomized Complete block design (RCBD) and replicated three times. Results showed that plant height (220.17 cm, 216.80 cm) and stem diameter (2.27 cm, 1.16 cm). Bast fiber (2.27 t/ha, 2.27 t/ha) and seed yield (1.69 t/ha, 1.78 t/ha) in Ibadan and Ilora respectively were significantly higher in plots with combined fertilizer. Combined fertilizers had the highest fiber and seed yield above sole application and control (no fertilizer application). Hence it is recommended for kenaf cultivation in Southwest Nigeria.


Author(s):  
Tony Ngalamu ◽  
Silvestro Meseka ◽  
James Odra Galla ◽  
Nixon James Tongun ◽  
Newton W. Ochanda ◽  
...  

Cowpea is an important food crop with high nutritional and socio-economical values in South Sudan. However, the lack of improved varieties is one of the main production constraints. This study was undertaken to assess the yield stability performance of improved cowpea genotypes across six environments in South Sudan in 2014 and 2015. Nine genotypes were evaluated in a randomized complete block design with three replications. Genotype and genotype x environment biplot analysis method was used to determine yield stability. Highly significant (p less than 0.001) genotype x environment interaction effect was detected for seed yield. IT90K-277-2 had the highest while ACC004 had the lowest grain yield. Palotaka was as highly discriminating and repeatable environment compare to the other testing sites. IT07K-211-1-8 and Mading Bor II were the most responsive genotypes, while IT90K-277-2 was the most stable high yielding genotype across the test environments and can be grown by farmers across the region.


2017 ◽  
Vol 109 (3) ◽  
pp. 493 ◽  
Author(s):  
Solomon Tayo AKINYOSOYE ◽  
Johnson Adedayo ADETUMBI ◽  
Oluwafemi Daniel AMUSA ◽  
Adeola AGBELEYE ◽  
Folake ANJORIN ◽  
...  

<p>Variability is an important factor to consider in crop improvement programmes. This study was conducted in two years to assess genetic variability and determine relationship between seed yield, its components and tuber production characters among twelve accessions of African yam bean. Data collected were subjected to combined analysis of variance (ANOVA), Principal Component Analysis (PCA), hierarchical and K-means clustering analyses. Results obtained revealed that genotype by year (G × Y) interaction had significant effects on some of variables measured (days to first flowering, days to 50 % flowering, number of pod per plant, pod length, seed yield and tuber yield per plant) in this study.The first five principal components (PC) with Eigen values greater than 1.0 accounted for about 66.70 % of the total variation, where PC1 and PC 2 accounted for 39.48 % of variation and were associated with seed and tuber yield variables. Three heterotic groups were clearly delineated among genotypes with accessions AY03 and AY10 identified for high seed yield and tuber yield respectively. Non-significant relationship that existed between tuber and seed yield per plant of these accessions was recommended for further test in various agro-ecologies for their suitability, adaptability and possible exploitation of heterosis to further improve the accessions.</p>


Sign in / Sign up

Export Citation Format

Share Document