scholarly journals Stable walking of biped robot based on center of mass trajectory control

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 328-337
Author(s):  
Chenglin Jing ◽  
Jiajia Zheng

AbstractThe effect of center of mass (CoM) trajectory on stable walking of biped robot was studied in this study. The method of predictive control by controlling CoM trajectory to generate stable walking patterns was discussed, which simulated the principle of adjusting center of gravity in advance during human walking to adapt to the change of road conditions. As for uncertainty of robot modeling and the influence of environment, adding variable zero moment point for variable predictive control system can achieve self-adaptive adjustment of CoM trajectory to generate stable walking patterns. The simulation experiment results indicated that walking stability of biped robot was sensitive to the change of CoM trajectory. As long as CoM trajectory was adjusted well, stable walking of biped robot can be controlled even in the presence of disturbances. It is proved that the method of predictive control by controlling CoM motion to generate stable walking pattern is consistent with reality.

Robotica ◽  
2000 ◽  
Vol 18 (4) ◽  
pp. 389-402 ◽  
Author(s):  
M. Yagi ◽  
V. Lumelsky

The focus of this work is on sensor-based motion planning for a biped robot operating in a scene with unknown obstacles. Using on-line sensor information about its surroundings, the robot negotiates obstacles on its way. Depending on the obstacle's shape, size, and location, the decision-making system chooses an appropriate walking pattern. The robot then negotiates the obstacle and resumes stable motion. The walking pattern is chosen from a small number of precomputed patterns that together cover a reasonably wide range of possible situations. The overall control strategy is based on the concept of Zero Moment Point. Each precomputed pattern guarantees dynamically stable motion; its stability is obtained by adjusting the swing leg center of mass and hip position trajectories. The approach is fast enough for real-time implementation. Simulation experiments demonstrate stability of motion when negotiating various obstacles.


2010 ◽  
Vol 07 (04) ◽  
pp. 635-667 ◽  
Author(s):  
KUO-YANG TU ◽  
MI-SHIN LIU

Traditional planning of biped robot walking patterns solves optimal trajectory for minimizing energy consumption. However, a diversity of biped robot walking functions lead to a variety of walking types. The walking patterns to implement a variety of biped robot objectives should have enough parameters to cope with their functions. In this article, walking patterns based on two 4-3-4 polynomials for the trajectories of biped robot waist and lower limb are proposed. The main advantage of the walking pattern is that 4-3-4 polynomials containing the parameters of acceleration and deceleration for biped walking make the implementation of a variety of walking types possible. In the study, the prototype mechanism of a biped robot is designed. After that, the direct and inverse kinematic equations of the biped robot are derived. For studying motion energy of biped robots, kinetic and potential energies are also defined. Based on these definitions, the parameters of the biped robot trajectories for minimum motion energy are solved. The solution is summarized by a development procedure. In addition, the study of zero moment point (ZMP) during the biped robot in walking is included.


2016 ◽  
Vol 13 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Yukitoshi Minami Shiguematsu ◽  
Przemyslaw Kryczka ◽  
Kenji Hashimoto ◽  
Hun-Ok Lim ◽  
Atsuo Takanishi

We propose a novel heel-contact toe-off walking pattern generator for a biped humanoid robot. It is divided in two stages: a simple model stage where a Linear Inverted Pendulum (LIP) based heel-contact toe-off walking model based on the so-called functional rockers of the foot (heel, ankle and forefoot rockers) is used to calculate step positions and timings, and the Center of Mass (CoM) trajectory taking step lengths as inputs, and a multibody dynamics model stage, where the final pattern to implement on the humanoid robot is obtained from the output of the first simple model stage. The final pattern comprises the Zero Moment Point (ZMP) reference, the joint angle references and the end effector references. The generated patterns were implemented on our robotic platform, WABIAN-2R to evaluate the generated walking patterns.


Aerospace ◽  
2006 ◽  
Author(s):  
E. Tarkesh Esfahani ◽  
Mohammad Elahinia

In this paper we present a walking pattern filter for Shape Memory Alloy (SMA) actuated biped robots. SMAs are known for their slow response. The actuation speed limitation can potentially lead to stability problems for biped robots. This filter adapts the human motion for a SMA biped in order to have a stable walking pattern. The Zero Moment Point (ZMP) is used as a main criterion of the filter to guarantee the stability of the motion. The SMA actuators are designed based on the dynamic and kinematics data of the motion. The response time of each SMA actuator is modeled in order to estimate the behavior of the actuator in realizing the given trajectory. After applying the delay times to the motion new trajectories are generated and checked by the ZMP criterion. The output of the filter can generate smooth trajectories for the SMA biped robots. The filter furthermore guarantees the stability while mimicking the human motion. The filter provides a practical way to create stable walking patterns using SMA actuators.


Robotica ◽  
2009 ◽  
Vol 27 (6) ◽  
pp. 883-889 ◽  
Author(s):  
Tang Qing ◽  
Xiong Rong ◽  
Chu Jian

SUMMARYThis paper analyzes the stabilization problem from the energy point of view. Perturbations are detected by the gyros and categorized according to the constraints on the zero-moment point, energy, and walking pattern. Ankle torque is exerted to extend the linear inverted pendulum mode (LIPM). Compensation movement is computed according to the analysis on the energy of LIPM and the influence of disturbance to the energy. The experimental results from both the simulation and the physical robot not only proved effective but also explain various human reactions to disturbance in locomotion.


1997 ◽  
Vol 36 (4) ◽  
pp. 135-142 ◽  
Author(s):  
Norihito Tambo ◽  
Yoshihiko Matsui ◽  
Ken-ichi Kurotani ◽  
Masakazu Kubota ◽  
Hirohide Akiyama ◽  
...  

A coagulation process for water purification plants mainly uses feedforward control based on raw water quality and empirical data and requires operator's help. We developed a new floc sensor for measuring floc size in a flush mixer to be used for floc control. A control system using model predictive control was developed on the floc size data. A series of experiments was performed to confirm controllability of settled water quality by controlling flush mixer floc size. An automatic control with feedback from the coagulation process was evaluated as practical and reliable. Finally this new control method was applied for actual plant and evaluated as practical.


2020 ◽  
pp. 110708
Author(s):  
Dasheng Lee ◽  
Chien-Jung Lin ◽  
Chih-Wei Lai ◽  
Tsai Huang

Sign in / Sign up

Export Citation Format

Share Document