scholarly journals AI and recruiting software: Ethical and legal implications

2020 ◽  
Vol 11 (1) ◽  
pp. 199-216
Author(s):  
Carmen Fernández-Martínez ◽  
Alberto Fernández

AbstractIn this article, we examine the state-of-the-art and current applications of artificial intelligence (AI), specifically for human resources (HR). We study whether, due to the experimental state of the algorithms used and the nature of training and test samples, a further control and auditing in the research community is necessary to guarantee fair and accurate results. In particular, we identify the positive and negative consequences of the usage of video-interview analysis via AI in recruiting processes as well as the main machine learning techniques used and their degrees of efficiency. We focus on some controversial characteristics that could lead to ethical and legal consequences for candidates, companies and states regarding discrimination in the job market (e.g. gender and race). There is a lack of regulation and a need for external and neutral auditing for the type of analyses done in interviews. We present a multi-agent architecture that aims at total legal compliance and more effective HR processes management.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


2019 ◽  
Vol 11 (16) ◽  
pp. 1943 ◽  
Author(s):  
Omid Rahmati ◽  
Saleh Yousefi ◽  
Zahra Kalantari ◽  
Evelyn Uuemaa ◽  
Teimur Teimurian ◽  
...  

Mountainous areas are highly prone to a variety of nature-triggered disasters, which often cause disabling harm, death, destruction, and damage. In this work, an attempt was made to develop an accurate multi-hazard exposure map for a mountainous area (Asara watershed, Iran), based on state-of-the art machine learning techniques. Hazard modeling for avalanches, rockfalls, and floods was performed using three state-of-the-art models—support vector machine (SVM), boosted regression tree (BRT), and generalized additive model (GAM). Topo-hydrological and geo-environmental factors were used as predictors in the models. A flood dataset (n = 133 flood events) was applied, which had been prepared using Sentinel-1-based processing and ground-based information. In addition, snow avalanche (n = 58) and rockfall (n = 101) data sets were used. The data set of each hazard type was randomly divided to two groups: Training (70%) and validation (30%). Model performance was evaluated by the true skill score (TSS) and the area under receiver operating characteristic curve (AUC) criteria. Using an exposure map, the multi-hazard map was converted into a multi-hazard exposure map. According to both validation methods, the SVM model showed the highest accuracy for avalanches (AUC = 92.4%, TSS = 0.72) and rockfalls (AUC = 93.7%, TSS = 0.81), while BRT demonstrated the best performance for flood hazards (AUC = 94.2%, TSS = 0.80). Overall, multi-hazard exposure modeling revealed that valleys and areas close to the Chalous Road, one of the most important roads in Iran, were associated with high and very high levels of risk. The proposed multi-hazard exposure framework can be helpful in supporting decision making on mountain social-ecological systems facing multiple hazards.


2019 ◽  
Vol 20 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Natalie Stephenson ◽  
Emily Shane ◽  
Jessica Chase ◽  
Jason Rowland ◽  
David Ries ◽  
...  

Background:Drug discovery, which is the process of discovering new candidate medications, is very important for pharmaceutical industries. At its current stage, discovering new drugs is still a very expensive and time-consuming process, requiring Phases I, II and III for clinical trials. Recently, machine learning techniques in Artificial Intelligence (AI), especially the deep learning techniques which allow a computational model to generate multiple layers, have been widely applied and achieved state-of-the-art performance in different fields, such as speech recognition, image classification, bioinformatics, etc. One very important application of these AI techniques is in the field of drug discovery.Methods:We did a large-scale literature search on existing scientific websites (e.g, ScienceDirect, Arxiv) and startup companies to understand current status of machine learning techniques in drug discovery.Results:Our experiments demonstrated that there are different patterns in machine learning fields and drug discovery fields. For example, keywords like prediction, brain, discovery, and treatment are usually in drug discovery fields. Also, the total number of papers published in drug discovery fields with machine learning techniques is increasing every year.Conclusion:The main focus of this survey is to understand the current status of machine learning techniques in the drug discovery field within both academic and industrial settings, and discuss its potential future applications. Several interesting patterns for machine learning techniques in drug discovery fields are discussed in this survey.


Author(s):  
Rahul Kumar Sevakula ◽  
Wan‐Tai M. Au‐Yeung ◽  
Jagmeet P. Singh ◽  
E. Kevin Heist ◽  
Eric M. Isselbacher ◽  
...  

2003 ◽  
Vol 06 (03) ◽  
pp. 405-426 ◽  
Author(s):  
PAUL DARBYSHIRE

Distillations utilize multi-agent based modeling and simulation techniques to study warfare as a complex adaptive system at the conceptual level. The focus is placed on the interactions between the agents to facilitate study of cause and effect between individual interactions and overall system behavior. Current distillations do not utilize machine-learning techniques to model the cognitive abilities of individual combatants but employ agent control paradigms to represent agents as highly instinctual entities. For a team of agents implementing a reinforcement-learning paradigm, the rate of learning is not sufficient for agents to adapt to this hostile environment. However, by allowing the agents to communicate their respective rewards for actions performed as the simulation progresses, the rate of learning can be increased sufficiently to significantly increase the teams chances of survival. This paper presents the results of trials to measure the success of a team-based approach to the reinforcement-learning problem in a distillation, using reward communication to increase learning rates.


Author(s):  
Kartik Palani ◽  
Ramachandra Kota ◽  
Amar Prakash Azad ◽  
Vijay Arya

One of the major challenges confronting the widespread adoption of solar energy is the uncertainty of production. The energy generated by photo-voltaic systems is a function of the received solar irradiance which varies due to atmospheric and weather conditions. A key component required for forecasting irradiance accurately is the clear sky model which estimates the average irradiance at a location at a given time in the absence of clouds. Current methods for modelling clear sky irradiance are either inaccurate or require extensive atmospheric data, which tends to vary with location and is often unavailable. In this paper, we present a data-driven methodology, Blue Skies, for modelling clear sky irradiance solely based on historical irradiance measurements. Using machine learning techniques, Blue Skies is able to generate clear sky models that are more accurate spatio-temporally compared to the state of the art, reducing errors by almost 50%.


Sign in / Sign up

Export Citation Format

Share Document