Machine Learning Techniques in IoT Applications: A State of The Art

Author(s):  
Shaw Laxmi ◽  
Narayan Sahoo Rudra ◽  
K. Hemachandran ◽  
Kumar Nanda Santosh
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


2019 ◽  
Vol 11 (16) ◽  
pp. 1943 ◽  
Author(s):  
Omid Rahmati ◽  
Saleh Yousefi ◽  
Zahra Kalantari ◽  
Evelyn Uuemaa ◽  
Teimur Teimurian ◽  
...  

Mountainous areas are highly prone to a variety of nature-triggered disasters, which often cause disabling harm, death, destruction, and damage. In this work, an attempt was made to develop an accurate multi-hazard exposure map for a mountainous area (Asara watershed, Iran), based on state-of-the art machine learning techniques. Hazard modeling for avalanches, rockfalls, and floods was performed using three state-of-the-art models—support vector machine (SVM), boosted regression tree (BRT), and generalized additive model (GAM). Topo-hydrological and geo-environmental factors were used as predictors in the models. A flood dataset (n = 133 flood events) was applied, which had been prepared using Sentinel-1-based processing and ground-based information. In addition, snow avalanche (n = 58) and rockfall (n = 101) data sets were used. The data set of each hazard type was randomly divided to two groups: Training (70%) and validation (30%). Model performance was evaluated by the true skill score (TSS) and the area under receiver operating characteristic curve (AUC) criteria. Using an exposure map, the multi-hazard map was converted into a multi-hazard exposure map. According to both validation methods, the SVM model showed the highest accuracy for avalanches (AUC = 92.4%, TSS = 0.72) and rockfalls (AUC = 93.7%, TSS = 0.81), while BRT demonstrated the best performance for flood hazards (AUC = 94.2%, TSS = 0.80). Overall, multi-hazard exposure modeling revealed that valleys and areas close to the Chalous Road, one of the most important roads in Iran, were associated with high and very high levels of risk. The proposed multi-hazard exposure framework can be helpful in supporting decision making on mountain social-ecological systems facing multiple hazards.


2019 ◽  
Vol 20 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Natalie Stephenson ◽  
Emily Shane ◽  
Jessica Chase ◽  
Jason Rowland ◽  
David Ries ◽  
...  

Background:Drug discovery, which is the process of discovering new candidate medications, is very important for pharmaceutical industries. At its current stage, discovering new drugs is still a very expensive and time-consuming process, requiring Phases I, II and III for clinical trials. Recently, machine learning techniques in Artificial Intelligence (AI), especially the deep learning techniques which allow a computational model to generate multiple layers, have been widely applied and achieved state-of-the-art performance in different fields, such as speech recognition, image classification, bioinformatics, etc. One very important application of these AI techniques is in the field of drug discovery.Methods:We did a large-scale literature search on existing scientific websites (e.g, ScienceDirect, Arxiv) and startup companies to understand current status of machine learning techniques in drug discovery.Results:Our experiments demonstrated that there are different patterns in machine learning fields and drug discovery fields. For example, keywords like prediction, brain, discovery, and treatment are usually in drug discovery fields. Also, the total number of papers published in drug discovery fields with machine learning techniques is increasing every year.Conclusion:The main focus of this survey is to understand the current status of machine learning techniques in the drug discovery field within both academic and industrial settings, and discuss its potential future applications. Several interesting patterns for machine learning techniques in drug discovery fields are discussed in this survey.


Author(s):  
Rahul Kumar Sevakula ◽  
Wan‐Tai M. Au‐Yeung ◽  
Jagmeet P. Singh ◽  
E. Kevin Heist ◽  
Eric M. Isselbacher ◽  
...  

Author(s):  
Kartik Palani ◽  
Ramachandra Kota ◽  
Amar Prakash Azad ◽  
Vijay Arya

One of the major challenges confronting the widespread adoption of solar energy is the uncertainty of production. The energy generated by photo-voltaic systems is a function of the received solar irradiance which varies due to atmospheric and weather conditions. A key component required for forecasting irradiance accurately is the clear sky model which estimates the average irradiance at a location at a given time in the absence of clouds. Current methods for modelling clear sky irradiance are either inaccurate or require extensive atmospheric data, which tends to vary with location and is often unavailable. In this paper, we present a data-driven methodology, Blue Skies, for modelling clear sky irradiance solely based on historical irradiance measurements. Using machine learning techniques, Blue Skies is able to generate clear sky models that are more accurate spatio-temporally compared to the state of the art, reducing errors by almost 50%.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1256 ◽  
Author(s):  
Patryk Ziolkowski ◽  
Maciej Niedostatkiewicz

Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which determines the concrete class. Predictable compressive strength of concrete is essential for concrete structure utilisation and is the main feature of its safety and durability. Recently, machine learning is gaining significant attention and future predictions for this technology are even more promising. Data mining on large sets of data attracts attention since machine learning algorithms have achieved a level in which they can recognise patterns which are difficult to recognise by human cognitive skills. In our paper, we would like to utilise state-of-the-art achievements in machine learning techniques for concrete mix design. In our research, we prepared an extensive database of concrete recipes with the according destructive laboratory tests, which we used to feed the selected optimal architecture of an artificial neural network. We have translated the architecture of the artificial neural network into a mathematical equation that can be used in practical applications.


Author(s):  
Ramgopal Kashyap

Fast advancements in equipment, programming, and correspondence advances have permitted the rise of internet-associated tangible gadgets that give perception and information estimation from the physical world. It is assessed that the aggregate number of internet-associated gadgets being utilized will be in the vicinity of 25 and 50 billion. As the numbers develop and advances turn out to be more develop, the volume of information distributed will increment. Web-associated gadgets innovation, alluded to as internet of things (IoT), keeps on broadening the present internet by giving network and cooperation between the physical and digital universes. Notwithstanding expanded volume, the IoT produces big data described by speed as far as time and area reliance, with an assortment of numerous modalities and changing information quality. Keen handling and investigation of this big data is the way to creating shrewd IoT applications. This chapter evaluates the distinctive machine learning techniques that deal with the difficulties in IoT information.


Sign in / Sign up

Export Citation Format

Share Document