Investigation of Thermal Behavior of Phenol-Wood Condensation Product

2005 ◽  
Vol 25 (2) ◽  
Author(s):  
M. Hakkı Alma ◽  
İ. Kaya ◽  
B. Acemioğlu
Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


2020 ◽  
Vol 40 (suppl 2) ◽  
pp. 597-604
Author(s):  
Zahra NILCHIAN ◽  
Mohamad Reza EHSANI ◽  
Zahra PIRAVI-VANAK ◽  
Hossein BAKHODA

2019 ◽  
Vol 50 (17) ◽  
pp. 1721-1736
Author(s):  
Kaiqiang Hou ◽  
Xiaolong Weng ◽  
Wei Luo ◽  
Le Yuan ◽  
Wei Duan ◽  
...  

2011 ◽  
Vol 7 (2) ◽  
pp. 1338-1347
Author(s):  
Tarek Ali Fahad ◽  
Shaker.A.N. AL-Jadaan

Two new heterocyclic Organmercury compounds   were prepared from the reaction of Sulfamethaxazole and Sulfadiazine with 4-acetaminophenol as a coupler and separated as solids with characteristic colors. these compounds were characterized by F.T.IR-spectroscopy 1H-NMR , Micro-elemental Analysis and UV-Vis spectroscopic techniques . The work involves a study of acid – base properties compounds at different pH values, the ionization and protonation constants were calculated. The thermal behavior of these two compounds   were investigated on the basis of thermogravimetric (TGA) and differential thermogravimetric (DTG) analyses, Thermal decomposition of these compounds is multi-stage processes.


2020 ◽  
Author(s):  
Viraj kirinda ◽  
Scott Hartley

The self-assembly of foldamers into macrocycles is a simple approach to non-biological higher-order structure. Previous work on the co-assembly of ortho-phenylene foldamers with rod-shaped linkers has shown that folding and self-assembly affect each other; that is, the combination leads to new emergent behavior, such as access to otherwise unfavorable folding states. To this point this relationship has been passive. Here, we demonstrate control of self-assembly by manipulating the foldamers’ conformational energy surfaces. A series of o-phenylene decamers and octamers have been assembled into macrocycles using imine condensation. Product distributions were analyzed by gel-permeation chromatography and molecular geometries extracted from a combination of NMR spectroscopy and computational chemistry. The assembly of o-phenylene decamers functionalized with alkoxy groups or hydrogens gives both [2+2] and [3+3] macrocycles. The mixture results from a subtle balance of entropic and enthalpic effects in these systems: the smaller [2+2] macrocycles are entropically favored but require the oligomer to misfold, whereas a perfectly folded decamer fits well within the larger [3+3] macrocycle that is entropically disfavored. Changing the substituents to fluoro groups, however, shifts assembly quantitatively to the [3+3] macrocycle products, even though the structural changes are well-removed from the functional groups directly participating in bond formation. The electron-withdrawing groups favor folding in these systems by strengthening arene–arene stacking interactions, increasing the enthalpic penalty to misfolding. The architectural changes are substantial even though the chemical perturbation is small: analogous o-phenylene octamers do not fit within macrocycles when perfectly folded, and quantitatively misfold to give small macrocycles regardless of substitution. Taken together, these results represent both a high level of structural control in structurally complex foldamer systems and the demonstration of large-amplitude structural changes as a consequence of a small structural effects.


Sign in / Sign up

Export Citation Format

Share Document