Predicting the surface waviness of sheet moulding compound parts by simulating process-induced thermal stresses

2011 ◽  
Vol 31 (8-9) ◽  
Author(s):  
Walter Michaeli ◽  
Christoph Kremer

Abstract This paper describes an opportunity to compute the surface waviness of compression moulded sheet moulding compound (SMC) parts by simulating residual stresses. First, different types of surface defects occurring on SMC parts are discussed. A method for calculating the surface waviness of the compression moulded part is presented, which combines the simulation of the production process and the structural computation. Modelling of the curing reaction and the development of mechanical properties are discussed and implemented. The potential of the computation method is shown for an automotive fender made of SMC. The results state that the curing reaction of SMC can be well described using the approach of Ng and Manas-Zloczower. The position of the measured waviness on the examined fender is in good agreement with the calculated stress distribution.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2731
Author(s):  
Ameya Rege

The macroscopic mechanical behavior of open-porous cellular materials is dictated by the geometric and material properties of their microscopic cell walls. The overall compressive response of such materials is divided into three regimes, namely, the linear elastic, plateau and densification. In this paper, a constitutive model is presented, which captures not only the linear elastic regime and the subsequent pore-collapse, but is also shown to be capable of capturing the hardening upon the densification of the network. Here, the network is considered to be made up of idealized square-shaped cells, whose cell walls undergo bending and buckling under compression. Depending on the choice of damage criterion, viz. elastic buckling or irreversible bending, the cell walls collapse. These collapsed cells are then assumed to behave as nonlinear springs, acting as a foundation to the elastic network of active open cells. To this end, the network is decomposed into an active network and a collapsed one. The compressive strain at the onset of densification is then shown to be quantified by the point of intersection of the two network stress-strain curves. A parameter sensitivity analysis is presented to demonstrate the range of different material characteristics that the model is capable of capturing. The proposed constitutive model is further validated against two different types of nanoporous materials and shows good agreement.


1981 ◽  
Author(s):  
V Sachs ◽  
R Dörner ◽  
E Szirmai

Anti human plasminogen sera of the rabbit precipitate human plasma in the agar gel diffusion test by means of intra-basin absorption with plasminogenfree human plasma with three different types: type I is represented by one strong precipitation line, type II by two lines, a big one and a small one, and type III by three slight but distinct lines. The following frequencies of the different types have been observed in a sample of 516 human plasmas: type I 65%, type II 33% and type III 2%. Suppose the types are phenotypical groups of a diallelic system where the types I and III represent the homozygous genotypes and the type II the heterozygous the estimated gene frequencies are in good agreement with the expected values. There is also a good agreement of the distribution of plasminogen groups determined by electrofocussing from RAUM et al. and HOBART. The plasminogen groups possibly may have also a biological meaning because the plasmas of type III always have a lesser fibrinolytic activity than the plasmas of the other types.


2012 ◽  
Vol 166-169 ◽  
pp. 493-496
Author(s):  
Roya Kohandel ◽  
Behzad Abdi ◽  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Ahmad Beng Hong Kueh

The Imperialist Competitive Algorithm (ICA) is a novel computational method based on the concept of socio-political motivated strategy, which is usually used to solve different types of optimization problems. This paper presents the optimization of cold-formed channel section subjected to axial compression force utilizing the ICA method. The results are then compared to the Genetic Algorithm (GA) and Sequential Quadratic Programming (SQP) algorithm for validation purpose. The results obtained from the ICA method is in good agreement with the GA and SQP method in terms of weight but slightly different in the geometry shape.


2001 ◽  
Vol 58-59 ◽  
pp. 189-203 ◽  
Author(s):  
Amelia Torres ◽  
Isabel de Marco ◽  
Blanca M Caballero ◽  
M.Feli Laresgoiti ◽  
Miguel A Cabrero ◽  
...  

1990 ◽  
Vol 14 (2) ◽  
pp. 135-140 ◽  
Author(s):  
G.Q. Jiao ◽  
S.T. Zheng ◽  
M. Suzuki ◽  
M. Iwamoto

2014 ◽  
Vol 622-623 ◽  
pp. 659-663 ◽  
Author(s):  
Fabio Bassan ◽  
Paolo Ferro ◽  
Franco Bonollo

In this work, the formation mechanisms of surface defects in multistage cold forging of axisymmetrical parts have been studied through FEM simulations. As case history, the industrial production of an heating pipe fitting by cold forging has been analyzed. Based on simulated flow behaviour of material, several types of surface defects are identified and attributed to plastic instability of the work-material, inappropriate axial/radial flow ratio, excessive forming-pressure and uncorrect tooling design. The results of the FE model are finally compared with those obtained from real forging process and good agreement is observed.


Author(s):  
Carlo Cialdai ◽  
Dario Vangi ◽  
Antonio Virga

This paper presents an analysis of the situation in which a two-wheeler (i.e. a motorcycle, where the term motorcycles includes scooters) falls over to the side and then successively slides; this typically occurs in road accidents involving this type of vehicle. Knowing the deceleration rate of the sliding phase allows the kinetic energy dissipated and the speed of the motorcycle just before the fall to the ground to be calculated. These parameters are very important in the analysis and reconstruction of accidents. The work presented in this paper was developed in two experimental test sessions on fully faired motorcycles which are mainly of the scooter type and widely used in urban areas. In the first session, sliding tests were carried out, with the speed in the range 10–50 km/h, on three different types of road surface. Analysis of the evidence allowed the dissipative main phases of motion of the motorcycle (the impact with the ground, the rebounds and the stabilized swiping) to be identified and some factors affecting the phenomenon to be studied. The coefficient of average deceleration was calculated using two typical equations. The second test session consisted of drag tests. In these tests, the motorcycle, which had previously laid on its side, was dragged for a few metres at a constant speed of about 20 km/h, while the drag force was measured. A comparison of the results obtained in these tests with those obtained in the sliding tests yielded very good agreement in the coefficients of deceleration.


Sign in / Sign up

Export Citation Format

Share Document