scholarly journals Method of Sum of Power Losses as a Way for Determining the ki Coefficients of Energy Losses in Hydraulic Motor

2016 ◽  
Vol 23 (2) ◽  
pp. 57-63 ◽  
Author(s):  
A. Maczyszyn

Abstract This paper shows application of the method of sum of power losses to determining energy losses which occur in hydraulic rotary motor in situation when not all laboratory data are at one’s disposal or when no use is made of data contained in catalogue charts. The method makes it possible to determine the coefficients, ki, of energy losses occurring in the motor. The method of sum of power losses is based on the approach proposed by Z. Paszota, in the papers [3 ÷ 9]. It consists in adding power flow of energy losses occurring in the motor to power flow output and comparing the sum to the power flow input. Application of the method is exemplified by using a A6VM hydraulic motor.

2019 ◽  
Vol 49 (4) ◽  
pp. 203-219
Author(s):  
Grzegorz Skorek

Abstract The presented test results are an example of simulating determination of the hydrostatic field of the drive system and the energy efficiency of the system as a dependence on the speed and load coefficients of the hydraulic motor used in the system. The issues related to the determination of energy losses and energy efficiency of the hydraulic motor or drive system, which should be determined as dependent on the physical quantities independent of these losses, were also discussed. A Paszota diagram of the power increase in the direction opposite to the direction of the power flow, replacing the Sankey diagram of the power decrease in the direction of the power flow in the hydraulic motor or in the drive system was analyzed.


2012 ◽  
Vol 19 (2) ◽  
pp. 3-10 ◽  
Author(s):  
Zygmunt Paszota

Effect of the working liquid compressibility on the picture of volumetric and mechanical losses in a high pressure displacement pump used in a hydrostatic drive Working liquid compressibility may considerably change the values and proportions of coefficients of volumetric and mechanical energy losses in the displacement pump used in a hydrostatic drive system. This effect can be particularly seen in the operation under high pressure and also in the system, where aeration of the working liquid can occur. In the Part I a diagram is presented, proposed by the author, of power increase in a hydrostatic drive system (hydraulic motor, pump) opposite to the direction of power flow, replacing the Sankey diagram of power decrease in the direction of power flow. Mathematical model is presented of volumetric losses in the pump and its laboratory verification.


2021 ◽  
Vol 11 (10) ◽  
pp. 4418
Author(s):  
Alejandra Paz-Rodríguez ◽  
Juan Felipe Castro-Ordoñez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

This paper deals with the optimal siting and sizing problem of photovoltaic (PV) generators in electrical distribution networks considering daily load and generation profiles. It proposes the discrete-continuous version of the vortex search algorithm (DCVSA) to locate and size the PV sources where the discrete part of the codification defines the nodes. Renewable generators are installed in these nodes, and the continuous section determines their optimal sizes. In addition, through the successive approximation power flow method, the objective function of the optimization model is obtained. This objective function is related to the minimization of the daily energy losses. This method allows determining the power losses in each period for each renewable generation input provided by the DCVSA (i.e., location and sizing of the PV sources). Numerical validations in the IEEE 33- and IEEE 69-bus systems demonstrate that: (i) the proposed DCVSA finds the optimal global solution for both test feeders when the location and size of the PV generators are explored, considering the peak load scenario. (ii) In the case of the daily operative scenario, the total reduction of energy losses for both test feeders are 23.3643% and 24.3863%, respectively; and (iii) the DCVSA presents a better numerical performance regarding the objective function value when compared with the BONMIN solver in the GAMS software, which demonstrates the effectiveness and robustness of the proposed master-slave optimization algorithm.


Author(s):  
Michael Westman ◽  
Ove Isaksson

This paper is concerned with forest logging machinery. A great deal of final felling in cut-to-length method done by harvester, which fells, delimbs and cuts the trees to pre-selected lengths. Two important criteria of a harvester head are that it has to be energy efficient and it has to be as fast as possible. To minimize losses in hydraulic systems the main demand is to reduce pressure losses in high power valves and outer components as much as possible. Each orifice in the flow path results in power losses. This work is an experimental study on power losses and acceleration of hydraulic motor in a system with long hoses. Main hydraulic components included are hydraulic pump, cartridge valve, pipe line and hydraulic motor. The results show that pre-activating the pump improves the system speed. To reduce losses, optimization of valve block, cartridge valve orifices are needed. Accumulators are favourable if combined with high stand-by pressure.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2851 ◽  
Author(s):  
Valeriya Tuzikova ◽  
Josef Tlusty ◽  
Zdenek Muller

In the modern electric power industry, Flexible AC Transmission Systems (FACTS) have a special place. In connection with the increased interest in the development of “smart energy”, the use of such devices is becoming especially urgent. Their main function is the ability to manage modes in real time: maintain the necessary level of voltage in the grids, control the power flow, increase the capacity of power lines and increase the static and dynamic stability of the power grid. The problem of system reliability and stability is related to the task of definitions and optimizations and planning indicators, design and exploitation. The main aim of this article is the definition of the best placement of the STATCOM compensator in case to provide stability and reliability of the grid with the minimization of the power losses, using Particle Swarm Optimization algorithms. All calculations were performed in MATLAB.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Rémi Tardiveau ◽  
Frédéric Giraud ◽  
Adrian Amanci ◽  
Francis Dawson ◽  
Christophe Giraud-Audine ◽  
...  

A piezoelectric generator converts mechanical energy into electricity and is used in energy harvesting devices. In this paper, synchronisation conditions in regard to the excitation vibration are studied. We show that a phase shift of ninety degrees between the vibration excitation and the bender’s displacement provides the maximum power from the mechanical excitation. However, the piezoelectric material is prone to power losses; hence the bender’s displacement amplitude is optimised in order to increase the amount of power which is converted into electricity. In the paper, we use active energy harvesting to control the power flow, and all the results are achieved at a frequency of 200 Hz which is well below the generator’s resonant frequency.


Sign in / Sign up

Export Citation Format

Share Document