scholarly journals A Method for Determining the Usability Potential of Ship Steam Boilers

2016 ◽  
Vol 23 (4) ◽  
pp. 105-111 ◽  
Author(s):  
Łukasz Muślewski ◽  
Michał Pająk ◽  
Bogdan Landowski ◽  
Bogdan Żół Żółtowski

Abstract Ship large-power steam boiler may serve as an example of complex critical technical system. A basis for rational control of operation of such system is knowledge on its capability of fulfilling the tasks to which it was intended. In order to make it possible to apply computer aiding to operational decision-making the capability should be described analytically. In this paper it was proposed to express the capability of ship steam boiler ( considered a complex system) to perform service tasks, by calculating components of its usability potential in a given instant t. To this end , was distinguished a set of steam boiler fundamental features which formulate space of its technical states. Values and characteristic intervals of the features were defined and this way sub-spaces of serviceability and non-serviceability states of the object in question were determined. Next, in the considered space, technical state of the boiler and its usability potential was determined. Owing to this it become possible to quantitatively express the steam boiler functioning capability which served as a basis for elaborating an algorithm for controlling the operational processes of a complex technical system under action. In this paper is also described a way of application of the presented method to calculation of ship steam boiler usability potential, which may be especially instrumental in the case of operational control of the boilers of the kind , equipped with interstage reheaters, i.e. those operating with high values of operational parameters.

Author(s):  
Michał Pająk

The most important processes which take place in a technical system are the operation and service processes. Knowing the actual technical state of the system, it is possible to make a decision whether the system can operate or should be serviced. The efficiency of the system operation and the possibility of the failure occurrence strongly depend on the relevancy of this decision. The technical state of the system is described by the system features affected by the time histories of its operational parameters. Unfortunately, the amount of the operational parameters can be significant. Therefore, it becomes purposeful to identify the operational parameters significant from the system technical state evaluation point of view. In the article, the universal method of the significant operational parameters identification and the research carried out in a real industrial system to verify its correctness and the accuracy are presented.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2300
Author(s):  
Bronisław Andrzej Kolator

In this paper, the energy diagnostic of tractor performance consists in evaluating the energy (fuel consumption per hectare—dm3 ha−1) for a given agricultural operation and in combining it with working capacity, also called productivity (area productivity—ha h−1). One of the methods of solving this problem is the identification of the functioning process of the machine unit. A model of the process of the machine unit performance was developed, considering the operation of the rear linkage system of the implement with the force control adjustment system. In order to analyze the system, a mathematical model of the system function was built: tractor-implement-soil, defining the physical connections and interdependencies between the individual subsystems of the system. Based on this model, a simulation model was developed and implemented in the Matlab/Simulink environment. The Simulink package was used to test the performance of the machine set. The efficiency indicators according to the adopted criteria were calculated in the evaluation block. To evaluate the process, the technical and operational parameters of the tractor, the type and parameters of the tool, and soil properties were taken into account. The results of simulation studies obtained on a validated model are consistent with experimental data from appropriate soil conditions.


Author(s):  
A.R. ABLAEV ◽  
E.V. KHROMOV ◽  
R.R. ABLAEV ◽  
A.P. POLYAKOV

The article investigates the issue of optimization of a complex technical system at the stage of its design using a heuristic–phenomenological approach. The analysis of the principles of complex optimization of complex technical systems is carried out. A four–level structure for the synthesis of methodological, informational and software support for complex optimization of complex technical systems is proposed, which will allow controlling the programmable parameters of complex technical systems at each stage of their design.


Author(s):  
Carliss Y. Baldwin

How do firms create and capture value in large technical systems? In this paper, I argue that the points of both value creation and value capture are the system’s bottlenecks. Bottlenecks arise first as important technical problems to be solved. Once the problem is solved, Then the solution in combination with organizational boundaries and property rights can be used to capture a stream of rents. The tools a firm can use to manage bottlenecks are, first, an understanding first of the technical architecture of the system; and, second, an understanding of the industry architecture in which the technical system is embedded. Although these tools involve disparate bodies of knowledge, they must be used in tandem to achieve maximum effect. Dynamic architectural capabilities provide managers with the ability to see a complex technical system in an abstract way and change the system’s structure to manage bottlenecks and modules in conjunction with the firm’s organizational boundaries and property rights.


2019 ◽  
Vol 26 ◽  
pp. 36-46
Author(s):  
S. KONOVALOV ◽  

In the proposed article, various methods of constructing an artificial neural network as one of the components of a hybrid expert system for diagnosis were investigated. A review of foreign literature in recent years was conducted, where hybrid expert systems were considered as an integral part of complex technical systems in the field of security. The advantages and disadvantages of artificial neural networks are listed, and the main problems in creating hybrid expert systems for diagnostics are indicated, proving the relevance of further development of artificial neural networks for hybrid expert systems. The approaches to the analysis of natural language sentences, which are used for the work of hybrid expert systems with artificial neural networks, are considered. A bulletin board is shown, its structure and principle of operation are described. The structure of the bulletin board is divided into levels and sublevels. At sublevels, a confidence factor is applied. The dependence of the values of the confidence factor on the fulfillment of a particular condition is shown. The links between the levels and sublevels of the bulletin board are also described. As an artificial neural network architecture, the «key-threshold» model is used, the rule of neuron operation is shown. In addition, an artificial neural network has the property of training, based on the application of the penalty property, which is able to calculate depending on the accident situation. The behavior of a complex technical system, as well as its faulty states, are modeled using a model that describes the structure and behavior of a given system. To optimize the data of a complex technical system, an evolutionary algorithm is used to minimize the objective function. Solutions to the optimization problem consist of Pareto solution vectors. Optimization and training tasks are solved by using the Hopfield network. In general, a hybrid expert system is described using semantic networks, which consist of vertices and edges. The reference model of a complex technical system is stored in the knowledge base and updated during the acquisition of new knowledge. In an emergency, or about its premise, with the help of neural networks, a search is made for the cause and the control action necessary to eliminate the accident. The considered approaches, interacting with each other, can improve the operation of diagnostic artificial neural networks in the case of emergency management, showing more accurate data in a short time. In addition, the use of such a network for analyzing the state of health, as well as forecasting based on diagnostic data using the example of a complex technical system, is presented.


2019 ◽  
Vol 1 (7) ◽  
pp. 53-59
Author(s):  
S. A. Nazarevich ◽  
V. G. Farafonov ◽  
A. V. Vinnichenko

The article describes the modernization of consumer characteristics, through the selection of the quality indicators nomenclature using cluster analysis, and bringing the complex technical system (CTS) model using the example of civil aviation technology (CAE) to an invariant form. Also, the article uses a methodological apparatus for assessing the degree of product innovation taking into account the total number of product technical characteristics presented by regulatory and design documentation for the products being created. The obtained characteristics were synthesized by translating consumer requirements of the main participants of the civil aviation equipment market segment. Taking into account the opinions of various consumer groups, five clusters were created and the basic structures of the model of a complex technical system were modeled. Applied technological device suitable for solving problems related to structured and classification of valuable technical characteristics with a planning horizon of 10 years various representatives of the company producing different brands of products related to complex technical systems of civil aviation equipment.


Author(s):  
Suyog Patil ◽  
Anand Bewoor ◽  
Rajkumar Patil

Abstract The demand of steam in process industries is increasing rapidly, and this demand can be met by increasing the capacity utilization of steam boilers. Many of the process industries depend on industrial steam boilers as a vital component for their operation. The availability of the boiler can be improved by identifying critical mechanical sub-systems/components concerning failure frequency, reliability, and maintainability and minimizing their likelihood of occurrences. The selection of appropriate technique for data collection and reliability analysis is essential. The time between failure (TBF) and time to repair (TTR) of all components and sub-systems were collected to carry out Reliability, Availability and Maintainability (RAM) analysis. The best-fit distribution and distribution parameters were calculated using ReliaSoft software Weibull++10 after performing trend testing. The preventive maintenance intervals of all components and sub-systems and the availability of the system were evaluated. The analysis reveals that the combustion system, feed-water system, and blow-down system are the critical sub-systems from a reliability perspective and are still the biggest reasons for the boiler downtime. The research study also showed that TTR was longer for the combustion system than the other sub-systems, and thus, to enhance its availability, it is suggested that maintenance resources should be allocated at the appropriate moment to the combustion system. The study also shows the usage of RAM analysis in deciding the preventive maintenance intervals of components/sub-systems of the boiler. It also provides a reference for the preparation of the maintenance plan for the boiler system.


2019 ◽  
Vol 1278 ◽  
pp. 012018 ◽  
Author(s):  
V Nemtinov ◽  
A Zazulya ◽  
V Kapustin ◽  
Y Nemtinova

Sign in / Sign up

Export Citation Format

Share Document