Radiation protective characteristics of some selected tungstates

2019 ◽  
Vol 107 (4) ◽  
pp. 349-357 ◽  
Author(s):  
Mohammed I. Sayyed ◽  
Gandham Lakshminarayana ◽  
Mustafa R. Kaçal ◽  
Ferdi Akman

Abstract The mass attenuation coefficients (μ/ρ) of calcium tungstate, ammonium tungsten oxide, bismuth tungsten oxide, lithium tungstate, cadmium tungstate, magnesium tungstate, strontium tungsten oxide and sodium dodecatungstophosphate hydrate were measured at 14 photon energies in the energy range of 81–1333 keV using 22Na, 54Mn, 57Co, 60Co, 133Ba and 137Cs radioactive sources. The measured μ/ρ values were compared with those obtained from WinXCOM program and the differences between the experimental and theoretical values were very small. The bismuth tungsten oxide has the highest μ/ρ among the present samples in the studied energy region. From the μ/ρ values, we calculated the half value layer, tenth value layer and mean free path, and the results showed that ammonium tungsten oxide (which has the lowest density) and bismuth tungsten oxide (which has the highest density) possess the highest and lowest values of these three parameters, respectively. Additionally, from the incident and transmitted photon intensities, we calculated the radiation protection efficiency (RPE). The bismuth tungsten oxide was found to have RPE 98.53 % at 81 keV, which has the maximum value among the present samples and this suggested that bismuth tungsten oxide is the best to be chosen as the γ radiation shielding material candidate among the selected samples.

2021 ◽  
Vol 5 (2) ◽  
pp. 126-132
Author(s):  
A. Temir ◽  
K.Sh. Zhumadilov ◽  
A. Kozlovskiy ◽  
A. Smagulova ◽  
D.I. Shlimas ◽  
...  

This article is devoted to the study of determination of gamma radiation shielding efficiency by new radiation-resistant glasses of the 0.5TeO2-(0.5-x)Bi2O3-xWO3 type. As a method of obtaining glasses, the method of solid-phase synthesis combined with thermal annealing and subsequent hardening was used. The amorphous nature of the synthesized samples was confirmed by X-ray phase analysis. Determination of the shielding efficiency, as well as the effect of Bi2O3 and WO3 content in the glass composition on the attenuation efficiency was carried out by evaluation of gamma radiation intensities from the 137Cs source, with a gamma ray energy of 661 keV. The evaluation was performed on parameters such as radiation protection efficiency, linear and mass attenuation coefficients, half-value layer and mean free path. During the studies, it was found that glasses of the following composition 0.5TeO2-0.1Bi2O3-0.4WO3 are most effective, which are 1.3-2 times higher than those of the composition 0.5TeO2-0.4Bi2O3-0.1WO3.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4697
Author(s):  
Ahmed M. El-Khatib ◽  
Mohamed Elsafi ◽  
Mohamed N. Almutiri ◽  
R. M. M. Mahmoud ◽  
Jamila S. Alzahrani ◽  
...  

The gamma-ray shielding ability of various Bentonite–Cement mixed materials from northeast Egypt have been examined by determining their theoretical and experimental mass attenuation coefficients, μm (cm2g−1), at photon energies of 59.6, 121.78, 344.28, 661.66, 964.13, 1173.23, 1332.5 and 1408.01 keV emitted from 241Am, 137Cs, 152Eu and 60Co point sources. The μm was theoretically calculated using the chemical compositions obtained by Energy Dispersive X-ray Analysis (EDX), while a NaI (Tl) scintillation detector was used to experimentally determine the μm (cm2g−1) of the mixed samples. The theoretical values are in acceptable agreement with the experimental calculations of the XCom software. The linear attenuation coefficient (μ), mean free path (MFP), half-value layer (HVL) and the exposure buildup factor (EBF) were also calculated by knowing the μm values of the examined samples. The gamma-radiation shielding ability of the selected Bentonite–Cement mixed samples have been studied against other puplished shielding materials. Knowledge of various factors such as thermo-chemical stability, availability and water holding capacity of the bentonite–cement mixed samples can be analyzed to determine the effectiveness of the materials to shield gamma rays.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3772
Author(s):  
M. I. Sayyed ◽  
Badriah Albarzan ◽  
Aljawhara H. Almuqrin ◽  
Ahmed M. El-Khatib ◽  
Ashok Kumar ◽  
...  

The gamma radiation shielding ability for CaO-K2O-Na2O-P2O5 glasses were experimentally determined between 0.0595 and 1.41 MeV. The experimental MAC results were compared with theoretical results obtained from the XCOM software to test the accuracy of the experimental values. Additionally, the effect of increasing the P2O5 in the glass composition, or reducing the Na2O content, was evaluated at varying energies. For the fabricated glasses, the experimental data strongly agreed with the XCOM results. The effective atomic number (Zeff) of the fabricated glasses was also determined. The Zeff values start out at their maximum (12.41–12.55) at the lowest tested energy, 0.0595 MeV, and decrease to 10.69–10.80 at 0.245 MeV. As energy further increases, the Zeff values remain almost constant between 0.344 and 1.41 MeV. The mean free path (MFP) of the fabricated glasses is investigated and we found that the lowest MFP value occurs at the lowest tested energy, 0.0595 MeV, and lies within the range of 1.382–1.486 cm, while the greatest MFP can be found at the highest tested energy, 1.41 MeV, within the range of 8.121–8.656 cm. At all energies, the KCNP40 sample has the lowest MFP, while the KCNP60 sample has the greatest. The half value layer (HVL) for the KCNP-X glasses is determined. For all the selected energies, the HVL values follow the order of KCNP40 < KCNP45 < KCNP50 < KCNP55 < KCNP60. The HVL of the KCNP50 sample increased from 0.996 to 2.663, 3.392, 4.351, and 5.169 cm for energies of 0.0595, 0.245, 0.444, 0.779, and 1.11 MeV, respectively. The radiation protection efficiency (RPE) results reveal that decreasing the P2O5 content in the glasses improves the radiation shielding ability of the samples. Thus, the KCNP40 sample has the best potential for photon attenuation applications.


2018 ◽  
Vol 119 ◽  
pp. 258-264
Author(s):  
Feida Chen ◽  
Minxuan Ni ◽  
Xiaobin Tang ◽  
Yun Zhang ◽  
Tuo Chen ◽  
...  

2021 ◽  
Author(s):  
RK GUNTU

Abstract The research on Cr2O3 doped SiO2 glasses is well known for advanced dielectrics. However, there are many other valuable properties associated with Cr2O3 inclusive various glasses. In this view, the current research aimed to develop the radiation shielding, elastically rich, and the EPR based Cr2O3 doped Ba(La)2SiO6 glass resource. Electron paramagnetic resonance, radiation shielding, and elastic studies have been employed to investigate the advanced characteristics. Structural characterization suggests glassy behavior with the Cr2O3 undoped glass. Whereas the other involved with Cr2O3 mol% shown with the ceramic behavior. The glass transition phenomena and forming abilities are studied with the help of differential thermal analysis techniques. Elastic studies have been done with the limit on the glasses, which suggests the glasses are flexible for elastic use. The electron paramagnetic resonance reports suggest high order of dipole-dipole super-exchange interaction and rhombohedral distortion within the glasses. Furthermore, we have tested the glasses for radiation shielding properties. The values of mass attenuation coefficient, radiation protection efficiency, mean free path, and energy absorption build-up factor of the glasses are measured and compared with values obtained with the help of standard photon shielding and dosimetry software. The studies indicate that the glasses developed are capable of radiation shielding. Upon 50 kGy, γ - irradiation, the thermoluminescence properties of the glasses are reported. The results found to be interesting, and reveal the resource developed are thermoluminescent at low activation energies. Furthermore, we have tested, the glasses for radiation shielding properties. Moreover, to introduce the detailed correlation between electron paramagnetic resonance, and thermoluminescence phenomenon, we have annealed the glasses under 0 to 300 oC temperature and upon the 0 to 50 kGy, γ - irradiation dose level. The electron paramagnetic resonance and thermoluminescence properties obtained for the glasses are highly correlative.


2013 ◽  
Vol 795 ◽  
pp. 195-200
Author(s):  
Ali Basheer Azeez ◽  
Kahtan S. Mohammed ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Azmi B. Rahmat

Shielding concretes of different iron filling contents were assessed for their anti radiation attenuation properties. The measurements have been performed by using gamma spectrometer of NaI (Tl) detector, the sources were Cs137 and Co60 radioactive elements with photon energies of o.662 MeV, for Cs137 and the two 1.17MeV, 1.33 MeV energy levels for the Co60. Likewise, the mean free path of the tested samples was obtained as well. From the measurement of the linear attenuation coefficients for these different shielding materials, it was found that as the iron filings within the concrete are increased the linear attenuation coefficient is increased also. It can be concluded from this work that the Iron filings content in concrete is very effective in augmentation of the anti-radiation shielding capability. It can be used as shelters material for secure storing of the nuclear wastes.


2018 ◽  
Vol 766 ◽  
pp. 88-93 ◽  
Author(s):  
Sunisa Sarachai ◽  
Natthakridta Chanthima ◽  
Nisakorn W. Sangwaranatee ◽  
Suchart Kothan ◽  
Siriprapa Kaewjaeng ◽  
...  

This study is to find a parameters that necessary for fabricating a radiation shielding glass in x-ray room. In this study, we performed a comparison of commercial lead glass product commercial window, and developed lead-free glass in the composition of xBaO:20ZnO:(80-x)B2O3 which are applied used for lead glass replacement. The result found that, the linear attenuation coefficients (m) were increased with the increase of BaO concentrations and the decrease of an x-ray tube voltage. The developed glass samples were investigated in terms of half value layer (HVL) and mean free path (MFP) that found to be decreased with the increase of BaO concentrations which the good characteristics for application in a x-ray shielding glass manufacturing.


2021 ◽  
Vol 11 (7) ◽  
pp. 3035
Author(s):  
H. O. Tekin ◽  
Shams A. M. Issa ◽  
G. Kilic ◽  
Hesham M. H. Zakaly ◽  
N. Tarhan ◽  
...  

This study aimed to perform an extensive characterization of a 74.75TeO2–0.25V2O5–(25 − x)B2O3-xNd2O3 glass system with (x = 0, 0.5, 1.0, and 1.5 mol%) for radiation shielding properties. Linear and mass attenuation coefficients were determined using Phy-X PSD software and compared with the simulation using Monte Carlo software MCNPX (version 2.7.0). Half value layer, mean free path, tenth value layer, effective atomic number, exposure buildup factor, and energy absorption buildup factors of VTBNd0.0, VTBNd0.5, VTBNd1.0, and VTBNd1.5 glasses were determined, respectively. The results showed that boron (III) oxide and neodymium (III) oxide substitution has an obvious impact on the gamma ray attenuation properties of the studied glasses. It can be concluded that the VTBNd1.5 sample with the highest content of neodymium (III) oxide (1.5 mol%) is the superior sample for shielding of gamma radiation in the investigated energy range.


2019 ◽  
Vol 9 (9) ◽  
pp. 1765 ◽  
Author(s):  
Seon-Chil Kim ◽  
Sung-Hyoun Cho

The most important factors in the manufacture of shielded sheets are shielding ratio, light weight, and tensile strength. The base material should provide a light-shielding film with strong physical shock resistance, while maintaining the shielding ratio of lead. Therefore, we studied the correlation between the porosity during the mixing process and the maintenance of the shielding film characteristics. Changes in the shielding ratio can be predicted according to the properties of materials such as polymeric silicon and tungsten oxide. Further, their tensile strength and porosity may change depending on the content of the material. Experiments were carried out for each substance based on the shielding ratio with respect to the processing conditions. For a shielding film using barium sulfate (BaSO4) and polymeric silicon, increasing the porosity by the removal of air in the same manufacturing process resulted in a tensile strength of 6.4 MPa at 22% porosity. For tungsten oxide (WO3), the tensile strength was 10.5 MPa at a porosity of 12%, and for a 0.6 mm sample, the shielding performance was very similar to 0.21 mm of Pb. The porosity during the manufacturing process affected the tensile strength and shielding performance, which were significantly different for each shielding material.


2018 ◽  
Vol 9 (08) ◽  
pp. 20193-20206 ◽  
Author(s):  
Md. Akhlak Bin Aziz ◽  
Md. Faisal Rahman ◽  
Md. Mahidul Haque Prodhan

The paper compares  Lead, Copper and Aluminium as gamma radiation shielding material using both experimental and simulation techniques. Cs- 137 (662KeV), Na-22 (511KeV) and Na- 22(1274KeV) were used as gamma radiation sources and a sodium iodide (NaI) detector was used to detect the radiation. Variations were noted for detected gamma count rates by changing shielding material thickness. In the experimental approach, thickness was varied by placing sheets of a particular test material one by one. For simulation, Monte Carlo n- Particle (MCNP) code version 4c was used and the geometry of the whole experimental setup was plotted in it. The results were then compared for each test material and it was found that lead is the best shielding material for gamma radiation followed by copper and aluminium.


Sign in / Sign up

Export Citation Format

Share Document