Separation and quantification of 90Sr from ion-exchange resin radioactive waste: methods and techniques of analysis

2020 ◽  
Vol 108 (8) ◽  
pp. 627-640
Author(s):  
Aurelia Magdalena Dianu ◽  
Relu Ion Dobrin

AbstractFour methods for 90Sr separation from spent ion-exchange resin samples were carried out, offering a useful methodology to achieve interferences free 90Sr fractions. The four methods consist in resin sample decomposition, pre-treatment and selective separation of 90Sr by using: (a) a single chromatographic extraction process, (b) double chromatographic extraction, (c) a single chromatographic extraction process followed in sequence by two precipitations, and (d) ion-exchange chromatography, followed by extraction chromatography and precipitation. Mineralization by microwave acid digestion and the four 90Sr separation methods thoroughly presented are available. Data processing methods (adjustable modified efficiency tracing – a new improved approach for the efficiency tracing LSC technique, non-linear regression and α-β discrimination) to obtain the activities values of α, β-γ, pure β emitters and the evaluation of chemical recovery yield of strontium were presented. A discussion about activity assessment in 90Sr purified fractions, providing a convincing argument to support the accuracy of the 90Sr separation methods, is also offered.

2009 ◽  
Vol 52 (2) ◽  
pp. 427-436 ◽  
Author(s):  
João Batista Severo Jr. ◽  
Roberto Rodrigues de Souza ◽  
José Carlos Curvelo Santana ◽  
Elias Basile Tambourgi

In the present work, the effect of bed expansion on BSA adsorption on Amberlite IRA 410 ion-exchange resin was studied. The hydrodynamic behavior of an expanded bed adsorption column on effects of the biomolecules and salt addition and temperature were studied to optimize the conditions for BSA recovery on ion-exchange resin. Residence time distribution showed that HEPT, axial dispersion and the Pecletl number increased with temperature and bed height, bed voidage and linear velocity. The binding capacity of the resin increased with bed height. The Amberlite IRA 410 ion-exchange showed an affinity for BSA with a recovery yield of 78.36 % of total protein.


2011 ◽  
Vol 11 (1) ◽  
pp. 15-22 ◽  
Author(s):  
C. Liu ◽  
W. Chen ◽  
V. M. Robert ◽  
Z. G. Han

Natural organic matter (NOM) fouling continues to be the major barrier to efficient application of ultrafiltration (UF) in drinking water treatment. Algogenic organic matter (AOM), the main contributor to total NOM levels in raw waters characterised by elevated algae levels, is currently the subject of much investigation. In this study, the effect of AOM on fouling of ultrafiltration and the effectiveness of magnetic ion exchange resin (MIEX®) pre-treatment for AOM removal and membrane fouling control was evaluated. The results showed that, the main species of algae in raw water were Chlorella vulgaris, which accounted for 80% of total algae. AOM was predominantly hydrophilic (50% or more) with a low SUVA (1.7 Lm−1 mg−1). Coagulation alone could not remove AOM effectively (less than 20%), however, when combined with magnetic ion exchange resin pre-treatment, more than 60% of AOM was be removed; pre-treatment followed by coagulation was observed to be very effective in controlling membrane fouling by AOM. The application of magnetic ion exchange resin technology at a bed volume treatment rate (BVTR) of 800 was observed to effectively eliminate fouling of UF membrane. Careful analyses of the molecular weight (MW) distribution of AOM and UV absorbance of treated water revealed that the effectiveness in membrane fouling control was the result of the changes in AOM molecular characteristics in treated water, namely a change in MW due to the preferential removal of high molecular proteins by coagulation and magnetic ion exchange resin pre-treatment. The results demonstrate that magnetic ion exchange resin followed by coagulation might be a new membrane pre-treatment option for UF membrane fouling control.


1979 ◽  
Vol 34 (5-6) ◽  
pp. 346-349 ◽  
Author(s):  
Bryan P. Cooper ◽  
Hans G. Trüper

Abstract An improved enzymatic method for the synthesis of adenylylsulfate (APS) from adenosine 5′-phosphate using APS-reductase from Thiobacillus denitrificans is described. Isolation of millimole quantitities of this sulfur nucleotide is achieved rapidly by means of ion exchange chromatography on a strongly basic ion exchange resin. A facile and reproducible desalting procedure is described.


Paleobiology ◽  
1979 ◽  
Vol 5 (2) ◽  
pp. 144-150 ◽  
Author(s):  
S. Weiner ◽  
H. A. Lowenstam ◽  
B. Taborek ◽  
L. Hood

The organic matrix components of a fossil ammonoid shell from the Upper Cretaceous, can be separated into sub-fractions which are generally comparable to those found in extant Nautilus, using ion exchange chromatography. This suggests that at least portions of these components are sufficiently well preserved to interact characteristically with the ion exchange resin. Amino acid compositions of these sub-fractions, however, do not resemble Nautilus organic matrix sub-fractions, indicating that considerable diagenetic alteration of this material has taken place.


1961 ◽  
Vol 39 (7) ◽  
pp. 1705-1709 ◽  
Author(s):  
J. H. Tremaine

The separation of a carnation virus from smaller cowpea-host antigens was achieved by column chromatography on a strongly basic ion-exchange resin. The separation was demonstrated by infectivity and serological tests, analytical ultracentrifugation, and ultraviolet spectrophotometry. The method is proposed for the removal of similar host components from preparations of other spherical plant viruses.


2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


Sign in / Sign up

Export Citation Format

Share Document