Dynamics of a generally layered composite beam with single delamination based on the shear deformation theory

2015 ◽  
Vol 22 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Ramazan-Ali Jafari-Talookolaei ◽  
Maryam Abedi ◽  
Mohammad H. Kargarnovin ◽  
Mohammad T. Ahmadian

AbstractThe free vibration analysis of generally laminated composite beam (LCB) with a delamination is presented using the finite element method (FEM). The effect of material couplings (bending-tension, bending-twist, and tension-twist couplings) with the effects of shear deformation, rotary inertia, and Poisson’s effect are taken into account. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with the results from available references and very good agreement observed. Furthermore, the effects of some parameters such as slenderness ratio, the rotary inertia, the shear deformation, material anisotropy, ply configuration, and delamination parameters on the natural frequency of the delaminated beam are examined.

2011 ◽  
Vol 335-336 ◽  
pp. 527-530 ◽  
Author(s):  
Xue Ping Chang ◽  
Xiao Dong Zhang ◽  
Qing You Liu

Abstract: On the basis of Reddy’s higher order shear deformation plate theory and the von Kármán’s geometry nonlinear theory, governing equations for nonlinear thermal buckling and post-buckling of cross-ply laminated composite beam subjected to a temperature rise are derived, in which the stretching-bending coupling terms produced by the non-homogenous distribution of the material properties are included. By using the shooting method to solve the corresponding nonlinear boundary value problem, numerical solutions for thermal post-buckling of cross-ply shear deformation laminated composite beam with its both ends immovably simply supported under uniform temperature rise are obtained. As an example, equilibrium paths and configurations for laminated composite beam paved in term of 0/90/0 are presented and characteristic curves of the nonlinear deformation changing with the thermal load were plotted. The effects of the geometric and physical parameters on the deformation of the beam are also examined. The theoretical analysis and numerical results show that different thermal expansion coefficient ratio, elastic moduli ratio, shear stiffness ratio will influence of the non-dimension critical buckling temperature.


2011 ◽  
Vol 335-336 ◽  
pp. 182-186 ◽  
Author(s):  
Xue Ping Chang ◽  
Zheng Liang ◽  
Qing You Liu

Abstract: On the basis of Reddy’s higher order shear deformation plate theory and the von Kármán’s geometry nonlinear theory, governing equations for nonlinear thermal buckling and post-buckling of symmetry angle-ply laminated composite beam subjected to a temperature rise are derived, in which the stretching-bending coupling terms produced by the non-homogenous distribution of the material properties are included. By using the shooting method to solve the corresponding nonlinear boundary value problem, numerical solutions for thermal post-buckling of symmetry angle-ply shear deformation laminated composite beam with its both ends immovably simply supported under uniform temperature rise are obtained. As an example, equilibrium paths and configurations for laminated composite beam paved in term of 45/90 are presented and characteristic curves of the nonlinear deformation changing with the thermal load were plotted. The effects of the geometric and physical parameters on the deformation of the beam are also examined. The theoretical analysis and numerical results show that different thermal expansion coefficient ratio, elastic moduli ratio, will influence of the non-dimension critical buckling temperature.


2011 ◽  
Vol 105-107 ◽  
pp. 2321-2324
Author(s):  
Xue Ping Chang ◽  
Jun Liu ◽  
Ji Hong Ren

Abstract: On the basis of Reddy’s higher order shear deformation plate theory and the von Kármán’s geometry nonlinear theory, governing equations for nonlinear thermal buckling and post-buckling of cross-ply laminated composite beam subjected to a temperature rise are derived, in which the stretching-bending coupling terms produced by the non-homogenous distribution of the material properties are included. By using the shooting method to solve the corresponding nonlinear boundary value problem, numerical solutions for thermal post-buckling of cross-ply shear deformation laminated composite beam with its both ends immovably simply supported under uniform temperature rise are obtained. As an example, equilibrium paths and configurations for laminated composite beam paved in term of 0/90/0 are presented and characteristic curves of the nonlinear deformation changing with the thermal load were plotted. The effects of the geometric and physical parameters on the deformation of the beam are also examined. The theoretical analysis and numerical results show that different thermal expansion coefficient ratio, elastic moduli ratio, shear stiffness ratio will influence of the non-dimension critical buckling temperature.


2013 ◽  
Vol 644 ◽  
pp. 207-211
Author(s):  
Yan Ping Xiao ◽  
Yi Ren Yang ◽  
Yu Qian

In this study, the natural frequencies of composite wings are investigated using the differential quadrature method (DQM) with Mechanical Properties. DQM is an efficient discretization technique for obtaining accurate numerical solutions to initial and/or boundary value problems using a considerably small number of grid points. In this way, a theoretical DQM model for the laminated composite beam has been developed. Some of the results obtained from DQM are compared with the results obtained in the literature. It has been seen that all of the results considered are very close to each other. It is also been concluded that the bending-torsional coupling rigidity of the composite beam has great and different influence on the first three natural frequencies.


2020 ◽  
Vol 8 (5) ◽  
pp. 3559-3565

In this Paper, the analysis of simply supported laminated composite beam having uniformly distributed load is performed. The solutions obtained in the form of the displacements and stresses for different layered cross ply laminated composite simply supported beams subjected uniformly distributed to load. Different aspect ratio consider for different results in terms of displacement, bending stress and shear stresses. The shear stresses are calculated with the help of equilibrium equation and constitutive relationship. Using displacement field including trigonometric function of laminated composite beams are derived from virtual displacement principle. There are axial displacement, transverse displacement, bending stress and shear stresses. In addition, Euler-Bernoulli (ETB), First order shear deformation beam theory (FSDT), Higher order shear deformation beam theory (HSDT) and Hyperbolic shear deformation beam theory (HYSDT) solution have been made for comparison and better accuracy of solutions and results of static analyses of laminated composite beams for simply supported laminated composite beam.


2019 ◽  
Vol 161 (A4) ◽  

This study investigates and reviews prior research works on skew composite laminates. The equivalent single layer theories are explored and discussed. An exhaustive review on static and dynamic analysis of composite skew laminates is also presented. Subsequently, a nine node isoparametric plate bending element is used for free vibration analysis of laminated composite skew plate with central skew cut out. The effect of shear deformation is incorporated in the formulation considering first order shear deformation theory. Two types of mass lumping schemes are analysed to study the effect of rotary inertia. Certain numerical examples of plates having different skew angles, skew cut out sizes, boundary conditions, thickness ratios (h/a), aspect ratios (a/b), fiber orientations and number of layers are solved which will be useful for benchmarking of future studies.


Author(s):  
Vijay Kumar Badagi ◽  
Rajamohan Ganesan

In this study, Symmetric cross-ply linear width tapered laminated composite beam is considered. Due to the variety of width tapered composite beams and the complexity of the analysis, no closed-form analytical solution is available at present regarding free vibration response. Therefore in the present work, the Ritz method is used for the free vibration analysis with considering uni-axial compressive and tensile force. The elastic stiffness of the width tapered composite beam is analyzed compared to uniform laminated composite beam. Free vibration which is significant to investigate the dynamic characteristics of the structure using Ritz method with and without effect of axial tensile and compressive force is analyzed. The analysis is based on 1D laminated beam theory. The governing equations are obtained by means of Hamilton’s principle. Tsai-Wu failure analysis is considered to find the tensile and compressive failure force for each ply in the laminate. Buckling analysis is conducted to find the critical buckling force for the laminated composite beam-column subjected to different sets of boundary conditions. Simply supported, Clamped-free, Clamped-Clamped edge boundary conditions are considered. A detailed parametric study is conducted on tapered composite beams made of NCT/301 graphite-epoxy to investigate the effects of the ratio of the width of the thick section to thin section, boundary conditions, effects of axial and compressive force on natural frequency and buckling analysis.


2015 ◽  
Vol 786 ◽  
pp. 421-425
Author(s):  
R. Arravind ◽  
M. Saravanan ◽  
K. Balasubramanian

This paper discusses about the impact of fiber volume fraction on the bending behavior of a laminated composite beam. A two layered composite beam with upper layer made of glass fiber epoxy resin and reinforced with Kevlar at the bottom side of the beam is modeled and structural analysis is carried out. The analysis shows that the tensile strength increases with increase in fiber volume fraction. The compression strength decreases with increase in fiber volume fraction in the upper fiber where as increases in the bottom fiber and the obtained results are correlating with the experimental and analytical studies.


Sign in / Sign up

Export Citation Format

Share Document