scholarly journals Current plantation practices have negligible genetic effects on planted dipterocarps in the tropical rainforest

2013 ◽  
Vol 62 (1-6) ◽  
pp. 292-299 ◽  
Author(s):  
A. Izuno ◽  
S. Indrioko ◽  
Widiyatno Widiyatno ◽  
E. Prasetyo ◽  
Kasmujiono Kasmujiono ◽  
...  

Abstract Dipterocarp trees are ecologically and commercially important in Southeast Asian tropical rainforests. For sustainable management of forest ecosystems and conservation of biodiversity, it is essential to establish plantation methods ensuring that genetic variation of the planted trees is equivalent to that in natural forests. The genetic diversity and differentiation of Shorea leprosula and Shorea parvifolia on plantations managed by a private-sector forestry company in Indonesia and those in natural populations were compared using microsatellite markers. Genetic diversity in the planted populations was as high as that in the natural populations. No clear genetic differences between each planted population and the natural forest populations were found. The genetic variation present in planted S. leprosula and S. parvifolia populations did not appear to deteriorate in the planting system implemented in Indonesia, known as Tebang Pilih Tanam Jalur (TPTJ). These results indicate that the current plantation method practiced in the region is suitable for maintaining the original genetic composition and achieving sustainable use of tropical rainforests.

Author(s):  
Tianxu Kuang ◽  
Fangmin Shuai ◽  
Xinhui Li ◽  
Weitao Chen ◽  
Sovan Lek

Understanding the genetic diversity and population structure of fish species is crucial for the sustainable use and protection of fish germplasm resources. Hemibagrus guttatus (Bagridae, Siluriformes) is widely distributed in the large subtropical Pearl River (China) and is commercially important. It's population have been declining. The genetic diversity of wild H. guttatus is not clear, despite its important ecological significance. In this paper, genes mitochondrial cytochrome c oxidase subunit I (COI) and cytochrome b (Cyt b) were used to analyze the genetic structure of H. guttatus population collected from six geographical populations in the main streams of the Pearl River. The results showed that the nucleotide diversity (π) and haplotype diversity (Hd) of wild H. guttatus was low (π < 0.005; Hd < 0.5). In addition, H. guttatus haplotypes did not cluster into clades according to geographical distribution, as revealed by neighbor-joining tree analysis. Analysis of molecular variance analysis (AMOVA) and F-statistics (Fst) values showed high homogeneity among wild H. guttatus populations. Our results suggest that there is degradation in germplasm resources of H. guttatus that could destabilize the sustainable use of this species and there was an urgent need for conservation of this species in South China.


2019 ◽  
Vol 36 (10) ◽  
pp. 2358-2374
Author(s):  
Nicolas Alcala ◽  
Amy Goldberg ◽  
Uma Ramakrishnan ◽  
Noah A Rosenberg

Abstract Natural populations display a variety of spatial arrangements, each potentially with a distinctive impact on genetic diversity and genetic differentiation among subpopulations. Although the spatial arrangement of populations can lead to intricate migration networks, theoretical developments have focused mainly on a small subset of such networks, emphasizing the island-migration and stepping-stone models. In this study, we investigate all small network motifs: the set of all possible migration networks among populations subdivided into at most four subpopulations. For each motif, we use coalescent theory to derive expectations for three quantities that describe genetic variation: nucleotide diversity, FST, and half-time to equilibrium diversity. We describe the impact of network properties on these quantities, finding that motifs with a high mean node degree have the largest nucleotide diversity and the longest time to equilibrium, whereas motifs with low density have the largest FST. In addition, we show that the motifs whose pattern of variation is most strongly influenced by loss of a connection or a subpopulation are those that can be split easily into disconnected components. We illustrate our results using two example data sets—sky island birds of genus Sholicola and Indian tigers—identifying disturbance scenarios that produce the greatest reduction in genetic diversity; for tigers, we also compare the benefits of two assisted gene flow scenarios. Our results have consequences for understanding the effect of geography on genetic diversity, and they can assist in designing strategies to alter population migration networks toward maximizing genetic variation in the context of conservation of endangered species.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


2018 ◽  
Vol 56 (3) ◽  
pp. 275
Author(s):  
Tran Thi Lieu ◽  
Dinh Thi Phong ◽  
Vu Thi Thu Hien

Keteleeria evelyniana Mast. is a big softwood species with high economic values. Therefore, the number of these trees are rapidly decreasing due to rampant exploitation as well as its habitat loss and recently, the species is considered vulnerablein Vietnam. In this study, we assessed the genetic variation among seventy K. evelyniana samples of three natural populations in Lam Dong, Dak Lak and Kon Tum using 16 microsatellite markers. The results showed that thirteen markers were polymorphic. A total 39 DNA fragments were amplified, among them, thirty – five were polymorphic (accounting for 89.74%). Among studied populations, the level of genetic diversity at Lam Dong (Na = 2.063; Ne = 1.730; Ap = 0.375; I = 0.558; Ho = 0.459 and He = 0.367) was the highest. Analysis of molecular variance (AMOVA) showed that the total level of molecular changes between populations was 34.65% and between individuals in the same population was 65.35%. Private alleles (Ap) and inbreeding values (Fis) of K. evelyniana species were founded of all three populations in Lam Dong, Dak Lak and Kon Tum (0.375 and -0.234; 0.188 and -0.065; 0.063 and -0.047, respectively). The gene flow (Nm) also occurred among the K. evelyniana populations with the average of Nm = 5.423. A dendrogram (UPGMA) constructed based on the similarity matrix of 70 K. evelyniana samples divided into two main groups with their genetic similarity coefficient ranged from 76.5% (Ke26 and Ke44) to 99% (Ke23 and Ke25). The obtained results indicated the importance of conserving the genetic resources of K. evelyniana species in Tay Nguyen.


Author(s):  
Robby McMinn ◽  
Matti Salmela ◽  
Cynthia Weinig

Circadian clocks manifest adaptations to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined why the endogenous circadian period length in the wild varies genetically around the hypothesized optimum of 24 h. We quantified genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevational gradient spanning 2460−3300 m in the Rocky Mountains. Measuring over 3800 plants from 473 maternal families (7−20 per population), we found genetic variation that was of similar magnitude among vs. within populations, with population means varying between 21.9−24.9 h and maternal family means within populations varying by up to ~6 h. After statistically factoring out spatial autocorrelation at the habitat extremes, we found that elevation explained a significant proportion of genetic variation in circadian period such that higher-elevation populations had shorter mean period lengths and less within-population variation. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings provide evidence that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic diversity in circadian traits in wild populations.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 45 ◽  
Author(s):  
Yitagesu Tegegne ◽  
Mathias Cramm ◽  
Jo Van Brusselen ◽  
Thais Linhares-Juvenal

The Agenda 2030 and its Sustainable Development Goals (SDGs) have directed increased political attention to forests and their sustainable management globally. Forest concessions are a predominant instrument for the sustainable management of public production natural forests in the tropics, but the relationship between the SDGs and forest concessions is poorly explored. Knowledge of this relationship could facilitate aligning tropical forest concession regimes with the SDGs. This research was conducted by means of an online survey, expert interviews and four regional stakeholder workshops to examine (i) how forest concessions can support the implementation of the SDGs; and (ii) what are the key barriers hindering the potential contributions of forest concessions to the SDG. The findings revealed three broad pathways through which forest concessions can support the implementation of the SDGs: (i) sustainable use and management of ecosystem goods and services as the core business; (ii) provision of public goods for socioeconomic development; and (iii) contribution to (sub) national economies through income, employment and fiscal obligations. The paper identifies region-specific (Africa, Latin America and Southeast Asia) technical, legal, governance and institutional barriers limiting the potential contributions. Among these, the key barriers are unclear and conflicting tenure, and the lack of available technical and qualified personnel. The paper concludes that the contributions of forest concessions to the SDGs depend on governance context and the clear use of the instrument to deliver such objectives as better planned and implemented concessions and binding concession contracts. The paper also provides recommendations for aligning forest concessions with the SDGs.


1998 ◽  
Vol 46 (4) ◽  
pp. 547 ◽  
Author(s):  
M. A. Rieger ◽  
M. Sedgley

The randomly amplified polymorphic DNA (RAPD) technique followed by analysis of molecular variance (AMOVA) was used to determine the level of variation within and between commercial plantations of Banksia coccinea R.Br. and B. menziesii R.Br. in South Australia and natural populations in Western Australia. For B. coccinea, the majority of variation was within populations (66.1%), while between all populations accounted for 20.8%. The variation between cultivated and natural populations was 13.2%. There was close clustering between the cultivated populations, which appeared to be most closely related to the inland natural populations. In contrast, the variation between cultivated and natural populations for B. menziesii was 0.4% with the majority of the variation within populations (93.2%) and 6.4% between all populations. The cultivated and natural populations formed a single cohesive cluster. These data indicate that the full range of natural genetic diversity of B. menziesii appears to occur in the cultivated plantations, but this was not the case for B. coccinea.


2018 ◽  
Vol 46 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Cintia P. Souto ◽  
Mariana Tadey

SummaryGenetic diversity is the raw material for species’ persistence over time, providing the potential to survive stochastic events, as well as climate and/or human-induced environmental changes. Biodiversity in dry rangelands is decreasing due to intensification of livestock production, but its effects on the genetic diversity of the consumed biota have seldom been assessed. We examined livestock effects on the genetic diversity of two dominant creosote species of the Patagonian Monte Desert, Larrea divaricata and Larrea cuneifolia. We deployed competing hierarchical regression models to assess the relationship between genetic variation within natural populations as a function of increasing stocking rates on ten arid rangelands. These species exhibit similar levels and patterns of genetic structure, with high levels of both inbreeding and divergence among locations. We found that increased stocking reduces genetic variation and increases genetic subdivision between populations. Our results indicate that grazing pressures are impoverishing the gene pool of these dominant native species of the Monte Desert, decreasing the evolutionary potential of the primary plant producers and increasing the desertification risk for a vulnerable habitat. We highlight the importance of considering livestock as a major driver of genetic losses in dry rangelands under overgrazing pressure, especially given current forecasts of climate change.


2003 ◽  
Vol 81 (8) ◽  
pp. 805-813 ◽  
Author(s):  
Hannele Lindqvist-Kreuze ◽  
Hilkka Koponen ◽  
Jari P.T Valkonen

The levels of genotypic and genetic variation were estimated in six natural populations of arctic bramble (Rubus arcticus L. subsp. arcticus) in Finland. Using three primer combinations, a total of 117 amplified fragment length polymorphisms (AFLP) were found. The results were highly reproducible and allowed identification of 78 genets among the 122 plants of arctic bramble studied. Genotypic variation measured as Simpson index (D) was high in all populations, ranging from 0.72 to 0.94. Also, the level of genetic variation measured as Shannon index was relatively high in all populations, ranging from 0.19 to 0.32 (average 0.26). The high levels of genetic diversity indicate that sexual reproduction has played a significant role in these populations. The hierarchical analysis of molecular variance (AMOVA) partitioned 48% of the genetic variation among populations, suggesting a high level of population differentiation and a low level of interpopulation gene flow. Genetic diversity among ten currently grown cultivars of arctic bramble and hybrid arctic bramble (R. arcticus subsp. arcticus × R. arcticus subsp. stellatus) was large, and the subspecies were clearly distinguished from each other based on the AFLP marker data.Key words: AFLP, AMOVA, population, natural habitat, Rubus arcticus subsp. arcticus, Rubus arcticus subsp. stellatus.


Sign in / Sign up

Export Citation Format

Share Document