scholarly journals Geomechanical Numerical Analysis as a Guidance for Preservation Works of the “Wieliczka” Salt Mine Site

2017 ◽  
Vol 39 (2) ◽  
pp. 25-34
Author(s):  
Kajetan D’Obyrn ◽  
Antoni Tajduś

Abstract Salt was excavated at the “Wieliczka” Salt Mine for over 700 years. Underground mining operations terminated in 1996, by which time almost 2,400 chambers and 245 km of galleries had been created underground, situated on 9 levels and a few interlevels. In 1978, the mine was included in the UNESCO World Heritage List, which stated that parts of the mine with historical value had to be preserved for future generations. In order to preserve the most valuable chambers and galleries, activities aimed at establishing a protection pillar for excavations were conducted in the conservation area on Levels I-V. The need of large scope preserving works created the necessity to conduct a new and truly comprehensive geomechanical analysis. Such an analysis could only be done by means of advanced numerical modelling codes. Three-dimensional calculations were performed by means of FLAC 3D finite difference code. Rock mass stability assessment in the vicinity of excavations was carried out on the basis of the distribution and range of the so called failure zones. This comprehensive geomechanical analysis allows for verification and give the directions for future preservation and closure works in the “Wieliczka” mine.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander H. Frank ◽  
Robert van Geldern ◽  
Anssi Myrttinen ◽  
Martin Zimmer ◽  
Johannes A. C. Barth ◽  
...  

AbstractThe relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16–27%) from highly dynamic anthropogenic combustion-related contributions (21–54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.


2018 ◽  
Vol 35 ◽  
pp. 04006
Author(s):  
Anna Szafarczyk ◽  
Rafał Gawałkiewicz

In Poland, there are many mining enterprises, of historic character registered in the UNESCO World Heritage List. One of the oldest mining enterprises in Poland is the Salt Mine in Bochnia. The processes inside the rock mass require that surveying services carry out regular geometric control of the cavities. A particular attention should be paid (due to its sacral function) on St. Kinga Chamber, located 195 metres below the surface, on the mine level “August”. So far measurement technologies have been connected with the studies on changes in the geometry of cavities and based on linear bases used to measure convergence. This only provides discrete information (in a point) and not always presents a real state of deformation. In the scanning method, in practice a three dimension image of changes (structural deformations) is obtained, impossible to determine with the application of measurement methods, applied to measure the value of linear convergence (the method with a limited number of bases). Laser scanning, apart from determining the value of volume convergence, gives also the possibility of the visualization of 3D cavern. Moreover, it provides direct information to update mining numerical maps and make it possible to generate various cross-sections through the cavern. The authors analysed the possibility of the application of laser scanning (scanner Faro Focus 3D), as a modern tool allowing the measuring of the value of volume convergence.


2022 ◽  
Vol 354 ◽  
pp. 00028
Author(s):  
Adrian Matei ◽  
Nicolae Ianc

According to the new classification method, salt mines and underground work or areas where methane has not been observed but for which methane has been observed in boreholes found in rock massifs are considered to be fire mines / mine areas or mining work. This new classification allows only the effective areas of exploitation to be maintained in the wire regime, the rest of the salt mine being considered non-wire. The purpose of this paper is to determine the rate of methane (explosive gas) and carbon dioxide (oxidizing gas) in the mining operations of the Tg-Ocna salt mine, given its classification.


2019 ◽  
Vol 2 (1) ◽  
pp. 532-540
Author(s):  
József Molnár ◽  
Ákos Debreczeni ◽  
Richárd Tompa

Abstract Numerous underground coal mines were in operation in the Borsod coal basin in northeastern part of Hungary until the beginning of this century. The main area of utilization of the mined out coal beside power and heat generation was supplying households with fuel mostly for heating. In the beginning of the 1990ies the power plants in question were shut down for economic, environmental and technical reasons. Consequently all the mines were closed no later than 2004 and thousands of miners lost their jobs. A new perspective of coal mining can be enabled by other ways of utilization of coal, e.g. coal chemistry, etc. Safe and modern equipment and technology enabling high output, clean coal, furthermore high rate of yield are targeted. Opportunity of sustainable underground coal mining in the north-eastern part of Hungary is discussed in the paper. Analysis of the properties of coal deposits using three-dimensional (3D) modelling are used for considering opportunities of new mining operations. Models are being developed.


2003 ◽  
Vol 14 (1) ◽  
pp. 59-67
Author(s):  
Adepo Jepson Olumide ◽  
Ayodele Charles Oludare ◽  
Balogun Olufemi

Coal, a solid fuel in its natural state has been identified as one of the world's major fossil fuels. It is a compact, stratified mass of mummified plant debris interspersed with smaller amounts of inorganic matter buried in sedimentary rocks. The use of coal as an energy source can be dated back to the prehistoric times. Methane is associated with many if not all coal seams, and is the dreaded “fire damp” responsible for many pit explosions. Coal mines are designed to vent as much methane as possible. It is present in the pores of coal under pressure, released during mining operations and can be extracted through vertical well bores. This paper highlights the fact that pipeline- quality methane can be extracted economically from coal seems before and during underground mining operations. The stimulation method involves hydraulic fracturing of the coal seam by using water, sand and, a gelling agent in a staged and alternating sand/and no sand sequence. The purpose is to create new fractures in the coal seam(s). The cleating of the coal helps to determine the flow characteristics of the coal formation and is vital in the initial productivity of a coal-methane well. The simple calculation of gas-in-place is achieved by multiplying the gas content of the coal by net coal thickness, the density, and the aerial extent of the drainage. The method is claimed to be suitable for use in Nigeria and potential sites for coal bed methane extraction in Nigeria are identified.


2019 ◽  
Vol 18 (32) ◽  
pp. 64-78
Author(s):  
Rinaldo Paar

Carl Ritter von Ghega was proclaimed 2018 Surveyor of the Year on 21 March 2018. In this paper, we explore how this Austrian of Albanian extraction, born in Venice, played an important role in geodesy and the surveying profession and the honours he got up to the present day. We investigate his background and details of his professional path, education and most important contributions in the areas of surveying and engineering at large. We describe his most significant achievement, that is, the Semmering Railway, which was dismissed at the time as impossible to achieve. In 1998, the Semmering Railway was inscribed in the UNESCO World Heritage List. Apart from this project, which left a great impression on the engineering profession, von Ghega also developed the Borovnica Viaduct built in the mid-19th century in Slovenia.


2018 ◽  
Vol 6 (2) ◽  
pp. 170-184

Today, limes is an en vogue term in Romania. Scientific research, heritage protection and, more recently, politic discourse – they all deal, directly or indirectly, with issues regarding the Frontiers of the Roman Empire in today’s Romania. In the context of nominating the Frontiers of the Roman Empire as a serial site of UNESCO World Heritage, each of the previously mentioned domains has its responsibilities towards the monument itself. In this study I focus on explaining the different understandings of the term limes. Next, I found it rather important and well-timed to discuss the main tasks and obligations of archaeological research, of the industry of tourism and of archaeological heritage protection in Romania throughout the entire process of nominating and inscribing the Limes on the UNESCO List, as well as after this process is long over.


Sign in / Sign up

Export Citation Format

Share Document