Properties and applications of electrically conductive thermoplastics for additive manufacturing of sensors

2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Benedikt Hampel ◽  
Samuel Monshausen ◽  
Meinhard Schilling

AbstractIn consequence of the growing diversity of materials in the fused deposition modeling 3D printing technique, electrically conductive materials are commercially available. In this work two filaments based on thermoplastics filled with carbon or metal nanoparticles are analyzed in terms of their electrical conductance. The printing parameters to process the materials with the 3D printer are optimized with the design of experiments (DoE) method. A model to calculate the resistance of such 3D printed structures is presented and a demonstrator as a proof of concept was 3D printed based on these results. In addition, 3D printing of capacitors is investigated.

2017 ◽  
Vol 52 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Hoejin Kim ◽  
Torres Fernando ◽  
Mingyue Li ◽  
Yirong Lin ◽  
Tzu-Liang Bill Tseng

This paper presents a fabrication process to enhance homogeneous dispersion of BaTiO3 nanoparticles in polyvinylidene fluoride matrix nanocomposites using fused deposition modeling (FDM) 3D printing technique. The nanocomposites integrate the functional property (piezoelectric, pyroelectric, and dielectric) of BaTiO3 with the flexibility and lightweight of polyvinylidene fluoride. Traditionally, the simple yet effective way to fabricate the nanocomposites includes solvent-casting, spin-coating, and hot-embossing. However, these methods have disadvantages such as heterogeneous dispersion of BaTiO3 nanoparticles in polyvinylidene fluoride matrix due to the higher density of BaTiO3 compared with polyvinylidene fluoride and agglomeration during fabrication process. This heterogeneous dispersion could weaken functional and mechanical properties. Herein, fused deposition modeling 3D printing technique was utilized for homogeneous dispersion to alleviate the agglomeration of BaTiO3 in polyvinylidene fluoride through two processes: filament extrusion and 3D printing. In addition, thermal poling was applied to further enhance piezoelectric response of the BaTiO3/polyvinylidene fluoride nanocomposites. It is found that 3D printed BaTiO3/polyvinylidene fluoride nanocomposites exhibit three times higher piezoelectric response than solvent-casted nanocomposites.


2021 ◽  
pp. 026248932110409
Author(s):  
G Radhakrishna ◽  
Rupesh Dugad ◽  
Abhishek Gandhi

In this article, the development of microcellular structure foams has developed by integrating the two successful and existing technologies, namely CO2 gas batch foaming and Fused Deposition Modeling (FDM) 3D printing technique. It is a novel approach to manufacture complex design porous products for customized applications. The eventual cell morphologies of the extruded 3D printing filament depends on the process parameters pertaining to both microcellular foaming and 3D printing processes. Further, morphological study has been conducted to evaluate the cell morphologies of the 3D printing filament developed through customized FDM setup. During this process, the significance of various process parameters including saturation pressure, saturation time, desorption time, feed rate and extrusion temperature were thoroughly studied. To pursue this study base material used was acrylonitrile butadiene styrene (ABS). The 3D printed filaments consisted of cells with an average cell size in the range of 2.3–276 µm and the average cell density in the range of 4.7 × 104 to 4.3 × 109 cells/cm3. Finally, it has found that by controlling the process parameters different cell morphologies can be developed as per the end application.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 318 ◽  
Author(s):  
Pang-Yun Chou ◽  
Ying-Chao Chou ◽  
Yu-Hsuan Lai ◽  
Yu-Ting Lin ◽  
Chia-Jung Lu ◽  
...  

Polycaprolactone/nano-hydroxylapatite (PCL/nHA) nanocomposites have found use in tissue engineering and drug delivery owing to their good biocompatibility with these types of applications in addition to their mechanical characteristics. Three-dimensional (3D) printing of PCL/nHA nanocomposites persists as a defiance mostly because of the lack of commercial filaments for the conventional fused deposition modeling (FDM) method. In addition, as the composites are prepared using FDM for the purpose of delivering pharmaceuticals, thermal energy can destroy the embedded drugs and biomolecules. In this report, we investigated 3D printing of PCL/nHA using a lab-developed solution-extrusion printer, which consists of an extrusion feeder, a syringe with a dispensing nozzle, a collection table, and a command port. The effects of distinct printing variables on the mechanical properties of nanocomposites were investigated. Drug-eluting nanocomposite screws were also prepared using solution-extrusion 3D printing. The empirical outcomes suggest that the tensile properties of the 3D-printed PCL/nHA nanocomposites increased with the PCL/nHA-to-dichloromethane (DCM) ratio, fill density, and print orientation but decreased with an increase in the moving speed of the dispensing tip. Furthermore, printed drug-eluting PCL/nHA screws eluted high levels of antimicrobial vancomycin and ceftazidime over a 14-day period. Solution-extrusion 3D printing demonstrated excellent capabilities for fabricating drug-loaded implants for various medical applications.


2020 ◽  
Vol 863 ◽  
pp. 103-108
Author(s):  
Tran Anh Son ◽  
Pham Son Minh ◽  
Trung Do Thanh

3D printing is a promising digital manufacturing technique that manufactures product parts in a layer fashion. Fused deposition modeling (FDM) is a widely used 3D printing technique that produces components by heating, extruding, and depositing the filaments of thermoplastic polymers. Meanwhile, the properties of FDM-produced parts are significantly influenced by process parameters. These process parameters have different advantages that need to be investigated. This paper examines the effect of some process parameters on the tensile properties of some components produced using FDM technique. The study is performed on polylactic acid (PLA) material, using full factorial experimental design. Furthermore, three process parameter—material, infill density, and infill pattern—are considered. The results indicate that only the infill pattern significantly influences the tensile properties of the model.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Author(s):  
Nastase-Dan Ciobota ◽  
Gheorghe Gheorghe

Abstract The paper aims to demonstrate the capability of FDM – Fused Deposition Modeling 3D printing technique to build complex structures designed for replacing anatomic parts of human body. It proposes to push the limits of FDM machine in order to achieve both structural integrity, mechanical properties and complexity of the 3D print part. Main applicability focus on bioengineering - developing new, lightweight implants but also can easily extended to airspace/automotive industry.


2021 ◽  
Vol 2 (1 (110)) ◽  
pp. 70-80
Author(s):  
Oleksii Vambol ◽  
Andrii Kondratiev ◽  
Svitlana Purhina ◽  
Maryna Shevtsova

The mass application of FDM technology is slowed down due to the difficulty of selecting 3D printing parameters in order to manufacture an article with the required characteristics. This paper reports a study into the impact of 3D printing parameters (temperature, print speed, layer height) on mechanical parameters (strength, elasticity module), as well as on the accuracy of printing and roughness of the surface of a specimen based on thermoplastic (PLA plastic). Several batches of specimens were fabricated for this study in accordance with ASTM D638 and ASTM D695, which were tested for tension, geometric accuracy, and roughness. Based on the experimental data, regression analysis was carried out and the functional dependences of the strength, elasticity module, printing precision, roughness of a surface on 3D printing parameters (temperature, speed, thickness of the layer) were constructed. In addition, the derived mathematical model underlying a method of non-linear programming has established such printing parameters that could provide for the required properties of a structure. The analytical dependences reported in the current work demonstrate a high enough determination factor in the examined range of parameters. Using functional dependences during the design phase makes it possible to assess the feasibility of its manufacture with the required properties, reduce the time to work out the process of printing it, and give recommendations on the technological parameters of 3D printing. The recommendations from this study could be used to make PLA-plastic articles for various purposes with the required properties


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7122-7138
Author(s):  
Sang-U Bae ◽  
Young-Rok Seo ◽  
Birm-June Kim ◽  
Min Lee

Fused deposition modeling (FDM) 3D printing technology is the most common system for polymer additive manufacturing (AM). Recent studies have been conducted to expand both the range of materials that can be used for FDM and their applications. As a filler, wood flour was incorporated into poly lactic acid (PLA) polymer to develop a biocomposite material. Composite filaments were manufactured with various wood flour contents and then successfully used for 3D printing. Morphological, mechanical, and biodegradation properties of FDM 3D-printed PLA composites were investigated. To mitigate brittleness, 5 phr of maleic anhydride grafted ethylene propylene diene monomer (MA-EPDM) was added to the composite blends, and microstructural properties of the composites were examined by scanning electron microscopy (SEM). Mechanical strength tests demonstrated that elasticity was imparted to the composites. Additionally, test results showed that the addition of wood flour to the PLA matrix promoted pore generation and further influenced the mechanical and biodegradation properties of the 3D-printed composites. An excellent effect of wood flour on the biodegradation properties of FDM 3D-printed PLA composites was observed.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1618 ◽  
Author(s):  
Kozior ◽  
Trabelsi ◽  
Mamun ◽  
Sabantina ◽  
Ehrmann

Electrospinning is a well-known technology used to create nanofiber mats from diverse polymers and other materials. Due to their large surface-to-volume ratio, such nanofiber mats are often applied as air or water filters. Especially the latter, however, have to be mechanically highly stable, which is challenging for common nanofiber mats. One of the approaches to overcome this problem is gluing them on top of more rigid objects, integrating them in composites, or reinforcing them using other technologies to avoid damage due to the water pressure. Here, we suggest another solution. While direct 3D printing with the fused deposition modeling (FDM) technique on macroscopic textile fabrics has been under examination by several research groups for years, here we report on direct FDM printing on nanofiber mats for the first time. We show that by choosing the proper height of the printing nozzle above the nanofiber mat, printing is possible for raw polyacrylonitrile (PAN) nanofiber mats, as well as for stabilized and even more brittle carbonized material. Under these conditions, the adhesion between both parts of the composite is high enough to prevent the nanofiber mat from being peeled off the 3D printed polymer. Abrasion tests emphasize the significantly increased mechanical properties, while contact angle examinations reveal a hydrophilicity between the original values of the electrospun and the 3D printed materials.


Sign in / Sign up

Export Citation Format

Share Document