Design and Numerical Investigations on a Dual-Duct Variable Geometry RBCC Inlet

2020 ◽  
Vol 37 (2) ◽  
pp. 111-122 ◽  
Author(s):  
Xiaowei Liu ◽  
Lei Shil ◽  
Peijin Liu ◽  
Fei Qin ◽  
Guoqiang He

AbstractA widely applicable and variable geometry 2-D rocket based combined cycle (RBCC) inlet characterized by the dual-duct design is conceptually put forward. The inlet operates as dual-duct status in the low Mach range (0~4), and transits to single-flowpath status in the following high Mach range (4~7). It accomplishes operational status transition through an 8.0-degree ramp rotation and a 4.0-degree cowl rotation at Mach 4. Through numerical simulations on typical flight Mach numbers, the observed starting Mach number is 2.2, which provides a sufficient operational window for a smooth ejector-to-ramjet mode transition. The RBCC inlet achieves comprehensive high mass capture coefficients in the overall wide flight range, especially in the low speed regimes. Suitable Mach numbers satisfying various combustion requirements in different modes together with high total pressure recovery coefficients are also obtained since the physical throat areas, compression angles, and the corresponding contraction ratios can be adjusted by a large margin through very limited rotations. The variable geometry scheme is not only feasible for practical realizations, but is also simple to arrange the dynamic sealing issues in a low-temperature environment in the RBCC engine.

Author(s):  
Tianlai Gu ◽  
Shuai Zhang ◽  
Yao Zheng

Numerical analysis was conducted of a jaws inlet under different working conditions, including angles of attack of 0° and 3°, varying Mach number, and varying back pressure with a constant-area isolator, to investigate its performance and flow fields of starting and unstarting states. Results reveal that the jaws inlet has an enhanced flow capture capability in starting states, with the mass capture ratio higher than 0.96, but relatively reduced working range of inflow Mach numbers. Its performance at a low Mach number is better than that at a high Mach number. Non-uniform flow fields are observed in unstarting cases at low Mach numbers and high back pressures, while separation structures are confined in the pitching compression section. Further increase in Mach number or decrease in back pressure does not result in significant changes in the separation structures. In the unstarting case under a high back pressure, it is hard to achieve restarting through reductions in the back pressure.


An experimental study has been made of the gaseous drag torque on an isolated sphere rotating at high Mach numbers. The sphere was suspended electromagnetically and spun by induction. The drag torque has been measured through the transition régime from continuum to free molecule flow at Mach numbers (based on equatorial speed) of up to about five. These high Mach numbers were achieved in heavy vapours (diiodomethane, germanium tetrabromide and stannic bromide) with sonic speed as little as a quarter of that in air. To measure the pressure in the vapour a second (smaller) rotating sphere was used as a pressure gauge. The results agree well with those previously obtained and show an unexpected Mach number dependence in the transition régime.


Author(s):  
Lei Shi ◽  
Xiaowei Liu ◽  
Guoqiang He ◽  
Fei Qin ◽  
Xianggeng Wei ◽  
...  

AbstractNumerical integration simulations were performed on a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in the ejector mode during the takeoff regime. The effective principles of various cowl lip positions and shapes on the inlet operation and the overall performance of the entire engine were investigated in detail. Under the static condition, reverse cowl lip rotation in a certain range was found to contribute comprehensive improvement to the RBCC inlet and the entire engine. However, the reverse rotation of the cowl lip contributed very little enhancement of the RBCC inlet under the low subsonic flight regime and induced extremely negative impacts in the high subsonic flight regime, especially in terms of a significant increase in the drag of the inlet. Changes to the cowl lip shape provided little improvement to the overall performance of the RBCC engine, merely shifting the location of the leeward area inside the RBCC inlet, as well as the flow separation and eddy, but not relieving or eliminating those phenomena. The results of this study indicate that proper cowl lip rotation offers an efficient variable geometry scheme for a RBCC inlet in the takeoff regime.


1968 ◽  
Vol 13 (2) ◽  
pp. 56-64
Author(s):  
W. H. Tanner ◽  
J. F. VanWyckhouse ◽  
Patrick Cancro ◽  
John McCloud

Author(s):  
Daiki Terakado ◽  
Taku Nonomura ◽  
Makoto Sato ◽  
Kozo Fujii

We investigate the relation between vortical structures and sound source in isotropic compressible turbulence by direct numerical simulations with various turbulent Mach numbers. The sound source is obtained numerically from the Lighthill equation. As a first step, we study the sound source from the Reynolds stress, which is the dominant source in flows at low Mach numbers. We investigate, especially, sound source structures around the “coherent fine scale eddies” [1–4] to lead a universal conclusion of sound generation mechanism from the fine scale structures in supersonic flows. We find that the sound source structures around the coherent fine scale eddies show some distorted structures only in high Mach number flows because shocklets appear around the fine scale eddies in those flows. This change in sound source structures around the coherent fine scale eddies does not appear in low and moderate Mach number cases.


Sign in / Sign up

Export Citation Format

Share Document