Numerical Simulation of the Flow in the NASA Low-Speed Centrifugal Compressor

Author(s):  
Patrik P. Rautaheimo ◽  
Esa J. Salminen ◽  
Timo L. Siikonen
2017 ◽  
Vol 5 (2) ◽  
pp. 1526-1533
Author(s):  
S.M. Swamy ◽  
◽  
V. Panndurangadu. ◽  

2014 ◽  
Vol 496-500 ◽  
pp. 642-645
Author(s):  
Yun Wang ◽  
Wei Zhang

In view of power system in water-air UAV requirements, combine with the centrifugal impeller for aero-engine and the pump impeller. The design of a impeller of centrifugal compressor can work on the air and in the water for the new concept of air-water engine. With 3D design and a 3D CFD solver on it and analysis the results of numerical simulation. Results show that the designed impeller successfully reached the goal on the air and in the water. The experiences accumulated in this procedure are useful for similar impeller aerodynamic designs.


1983 ◽  
Vol 105 (2) ◽  
pp. 223-230 ◽  
Author(s):  
I. Ariga ◽  
N. Kasai ◽  
S. Masuda ◽  
Y. Watanabe ◽  
I. Watanabe

The present paper concerns itself with the effects of total pressure (and thus velocity) distortion on performance characteristics and surge margin of centrifugal compressors. Both radial and circumferential distortions were investigated. The performance tests as well as the velocity measurements within the impeller passages were carried out with a low-speed compressor test rig with the inlet honeycomb as the distortion generators and compared with the case of “no distortion” as a datum. The results indicated that the inlet distortion exerted unfavorable influences on the efficiency and the surge margin of the given compressor, though the influence of the radial distortion was much stronger than that of the circumferential one. Various distortion indices were further examined in order to correlate the performance to the inlet distortion.


Author(s):  
Zitian Niu ◽  
Zhenzhong Sun ◽  
Baotong Wang ◽  
Xinqian Zheng

Abstract Rotating stall is an important unstable flow phenomenon that leads to performance degradation and limits the stability boundary in centrifugal compressors. The volute is one of the sources to induce the non-axisymmetric flow in a centrifugal compressor, which has an important effect on the performance of compressors. However, the influence of volute on rotating stall is not clear. Therefore, the effects of volute on rotating stall by experimental and numerical simulation have been explored in this paper. It’s shown that one rotating stall cell generates in a specific location and disappears in another specific location of the vaneless diffuser as a result of the distorted flow field caused by the volute. Also, the cells cannot stably rotate in a whole circle. The frequency related to rotating stall captured in the experiment is 43.9% of the impeller passing frequency (IPF), while it is 44.7% of IPF captured by three-dimensional unsteady numerical simulation, which proves the accuracy of the numerical method in this study. The numerical simulation further reveals that the stall cell initialized in a specific location can be split into several cells during the evolution process. The reason for this is that the blockage in the vaneless diffuser induced by rotating stall is weakened by the mainstream from the impeller exit to make one initialized cell disperse into several ones. The volute has an important influence on the generation and evolution process of the rotating stall cells of compressors. By optimizing volute geometry to reduce the distortion of the flow field, it is expected that rotating stall can be weakened or suppressed, which is helpful to widen the operating range of centrifugal compressors.


2000 ◽  
Author(s):  
Fahua Gu ◽  
Abraham Engeda ◽  
Mike Cave ◽  
Jean-Luc Di Liberti

Abstract A numerical simulation is performed on a single stage centrifugal compressor using the commercially available CFD software, CFX-TASCflow. The steady flow is obtained by circumferentially averaging the exit fluxes of the impeller. Three runs are made at design condition and off-design conditions. The predicted performance is in agreement with experimental data. The flow details inside the stationary components are investigated, resulting in a flow model describing the volute/diffuser interaction at design and off-design conditions. The recirculation and twin vortex structure are found to explain the volute loss increase at lower and higher mass flows, respectively.


2012 ◽  
Vol 5 (8) ◽  
pp. 563-572 ◽  
Author(s):  
Layth H. Jawad ◽  
S. Abdullah ◽  
R. Zulkifli ◽  
W.M.F.W. Mahmood

1998 ◽  
Vol 14 (6) ◽  
pp. 925-933 ◽  
Author(s):  
Albert J. Sanders ◽  
Sanford Fleeter

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Gang Yu ◽  
Dong Li ◽  
Yue Shu ◽  
Zeyu Zhang

The engine/airframe interaction effects of the BWB300 on aerodynamic performances were analyzed by using the numerical simulation method. The BWB300 is a 300-seat Blended Wing Body airplane designed by the Airplane Concept Design Institute of Northwestern Polytechnical University. The engine model used for simulation was simplified as a powered nacelle. The results indicated the following: at high speed, although the engine/airframe interaction effects on the aerodynamic forces were not significant, the airframe’s upper surface flow was greatly changed; at low speed, the airframe’s aerodynamic forces (of the airplane with/without the engine) were greatly different, especially at high attack angles, i.e., the effect of the engine suction caused the engine configuration aerodynamic forces of the airframe to be bigger than those without the engine; and the engine’s installation resulting in the different development of flow separation at the airframe’s upper surface caused greater obvious differences between the 2 configurations at high angles and low speed. Moreover, at low-speed high attack angles, the separated flow from the blended area caused serious distortion at the fan inlet of the engine.


Sign in / Sign up

Export Citation Format

Share Document