Investigations on the Rare Earth Terpyridyl System

1965 ◽  
Vol 20 (6) ◽  
pp. 835-837 ◽  
Author(s):  
Shyama P. Sinha

The room temperature luminescence spectra of the monoterpyridyl chelates of trivalent samarium, dysprosium and thulium have been studied in solid state by exciting with monochromatic radiation of 3200 Å. The spectra of these chelates show intra f → f fluorescent transitions of the chelated rare earth ions as well as the molecular band fluorescence. The “bottleneck” nature of the energy transfer from the nitrogen containing heterocyclic ligands to the coordinated rare earth ions is proposed. The fluorescence data of mono-terpyridyl chelates have been compared with those of bis-dipyridyl one.The phosphorescence spectrum of terpyridyl has also been investigated. The lowest triplet state of the free ligand is found at 22 940 cm-1 above the ground level. The phosphorescence lifetime of terpyridyl is about 2 sec

2000 ◽  
Vol 80 (4) ◽  
pp. 719-728 ◽  
Author(s):  
Giorgia Franzó ◽  
Vincenzo Vinciguerra ◽  
Francesco Priolo

Nanoscale ◽  
2018 ◽  
Vol 10 (23) ◽  
pp. 11186-11195 ◽  
Author(s):  
C. H. Wong ◽  
E. A. Buntov ◽  
A. F. Zatsepin ◽  
J. Lyu ◽  
R. Lortz ◽  
...  

The study of magnetism without the involvement of transition metals or rare earth ions is considered the key to the fabrication of next-generation spintronic devices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wojciech A. Pisarski ◽  
Joanna Pisarska ◽  
Marta Kuwik ◽  
Marcin Kochanowicz ◽  
Jacek Żmojda ◽  
...  

AbstractFluoroindate glasses co-doped with Pr3+/Er3+ ions were synthesized and their near-infrared luminescence properties have been examined under selective excitation wavelengths. For the Pr3+/Er3+ co-doped glass samples several radiative and nonradiative relaxation channels and their mechanisms are proposed under direct excitation of Pr3+ and/or Er3+. The energy transfer processes between Pr3+ and Er3+ ions in fluoroindate glasses were identified. In particular, broadband near-infrared luminescence (FWHM = 278 nm) associated to the 1G4 → 3H5 (Pr3+), 1D2 → 1G4 (Pr3+) and 4I13/2 → 4I15/2 (Er3+) transitions of rare earth ions in fluoroindate glass is successfully observed under direct excitation at 483 nm. Near-infrared luminescence spectra and their decays for glass samples co-doped with Pr3+/Er3+ are compared to the experimental results obtained for fluoroindate glasses singly doped with rare earth ions.


Author(s):  
A. P. Mar`in ◽  
U. A. Mar`ina ◽  
V. A. Vorob`ev ◽  
R. V. Pigulev

The paper presents the results of a study of the luminescent properties of calcium gallate activated by trivalent rare earth ions Yb3+ and Er3+. IR luminescence spectra of samples with a single activator Ca1‑хYbxGa2O4,Ca1‑хErxGa2O4 were studied when excited by radiation sources with a wavelength of 940 and 790 nm, respectively. The dependence of the luminescence intensity of samples on the concentration of rare earth ions is obtained. When the two-activator composition of Ca1‑х‑yYbxEryGa2O4 is excited by a semiconductor laser diode with a wavelength of 940 nm, IR luminescence is registered in the regions of 980-1100 nm and 1450-1670 nm. The radiation in these bands corresponds to electronic transitions in Yb3+ and Er3+ ions, respectively. For a luminescence band with a maximum at a wavelength of 1540 nm, the excitation spectra were measured, the maximum intensity is at the wavelengths: 930, 941, 970, 980 nm. The dependence of the IR luminescence intensity of a solid solution of Ca1‑х‑yYbxEryGa2O4 on the concentration of Er3+ ions was studied. With an increase in the concentration of Er3+ ions in the luminescence spectra, there is a redistribution in the intensity of the bands belonging to Yb3+ and Er3+ ions, which indicates the presence of energy transfer processes between these ions. The kinetics of IR luminescence attenuation was studied for series with one and two activators: Ca1‑хYbxGa2O4,Ca1‑хErxGa2O4, Ca1‑х‑yYbxEryGa2O4. It is established that the luminescence attenuation occurs mainly according to the exponential law, which indicates the predominance of the intracenter luminescence mechanism in the studied structures. Based on the analysis of the excitation and luminescence spectra of experimental samples, conclusions are made about the interaction of Yb3+ and Er3+ activator ions in the crystal lattice of calcium gallate.


1995 ◽  
Vol 413 ◽  
Author(s):  
M. A. Drobizhev ◽  
M. N. Sapozhnikov ◽  
V. M. KobryanskII

ABSTRACTSelectively excited room-temperature luminescence spectra are reported for thin films of poly(p-phenylene) (PPP) deposited onto quartz substrata. The spectra exhibit a localization threshold in the low-energy tail of the luminescence excitation band at vloc.= 22400 cm−1, 2200 cm−1 below the maximum of the excitation spectrum. Upon laser excitation at Vex < Vloc., the maximum Vem of the luminescence spectrum shifts linearly with Vex due to selective excitation of polymer segments. It was found that there exists the frequency range where the slope of the Vem vs Vex dependence is smaller than unity, which corresponds to our previous model calculations for the case of selective excitation of chromophores through broad phonon bands. At vex > vloc,, the luminescence spectrum is independent of Vex. This behavior can be explained if one assumes that upon excitation below the localization threshold the luminescence is related to polymer segments directly excited by laser, whereas upon exciting above the threshold the fast energy relaxation takes place from initially excited states to lower-lying states, from which uminescence occurs.


2012 ◽  
Vol 1471 ◽  
Author(s):  
Larry D. Merkle

ABSTRACTTrivalent rare earth ions in crystalline or fiber hosts are among the most successful of laser materials, but new dopant-host combinations and more detailed understanding of existing materials continue to be needed. This paper presents a few examples from the work of our team at the Army Research Laboratory, highlighting the interrelation between spectroscopic properties and laser behavior. It focuses on bulk solids, though rare-earth-doped fiber lasers are also extremely important. One system discussed is Nd:YAG, particularly concentration quenching in heavily doped ceramic YAG. Spectroscopic properties of Yb:Y2O3 and Yb:Sc2O3 help to elucidate their laser performance. Spectra indicate that Er:YAG is more promising than Er:Sc2O3 for room temperature laser operation, but that the reverse is true for operation at and somewhat above liquid nitrogen temperature.


Sign in / Sign up

Export Citation Format

Share Document