Room-temperature luminescence from rare-earth ions implanted into Si nanocrystals

2000 ◽  
Vol 80 (4) ◽  
pp. 719-728 ◽  
Author(s):  
Giorgia Franzó ◽  
Vincenzo Vinciguerra ◽  
Francesco Priolo
1965 ◽  
Vol 20 (6) ◽  
pp. 835-837 ◽  
Author(s):  
Shyama P. Sinha

The room temperature luminescence spectra of the monoterpyridyl chelates of trivalent samarium, dysprosium and thulium have been studied in solid state by exciting with monochromatic radiation of 3200 Å. The spectra of these chelates show intra f → f fluorescent transitions of the chelated rare earth ions as well as the molecular band fluorescence. The “bottleneck” nature of the energy transfer from the nitrogen containing heterocyclic ligands to the coordinated rare earth ions is proposed. The fluorescence data of mono-terpyridyl chelates have been compared with those of bis-dipyridyl one.The phosphorescence spectrum of terpyridyl has also been investigated. The lowest triplet state of the free ligand is found at 22 940 cm-1 above the ground level. The phosphorescence lifetime of terpyridyl is about 2 sec


Nanoscale ◽  
2018 ◽  
Vol 10 (23) ◽  
pp. 11186-11195 ◽  
Author(s):  
C. H. Wong ◽  
E. A. Buntov ◽  
A. F. Zatsepin ◽  
J. Lyu ◽  
R. Lortz ◽  
...  

The study of magnetism without the involvement of transition metals or rare earth ions is considered the key to the fabrication of next-generation spintronic devices.


2004 ◽  
Vol 817 ◽  
Author(s):  
D. Pacifici ◽  
G. Franzò ◽  
F. Iacona ◽  
A. Irrera ◽  
S. Boninelli ◽  
...  

AbstractIn the present paper, we will review our work on rare-earth doped Si nanoclusters. The samples have been obtained by implanting the rare-earth (e.g. Er) in a film containing preformed Si nanocrystals. After the implant, samples have been treated at 900°C for 1h. This annealing temperature is not enough to re-crystallize all of the amorphized Si clusters. However, even if the Si nanoclusters are in the amorphous phase, they can still efficiently transfer the energy to nearby rare-earth ions. We developed a model for the Si nanoclusters-Er system, based on an energy level scheme taking into account the coupling between each Si nanocluster and the neighboring Er ions. By fitting the data, we were able to determine a value of 3×10−15 cm3 s−1 for the Si nanocluster-Er coupling coefficient. Moreover, a strong cooperative up-conversion mechanism between two excited Er ions and characterized by a coefficient of 7×10−17 cm3 s−1, is shown to be active in the system, demonstrating that more than one Er ion can be excited by the same nanocluster. We show that the overall light emission yield of the Er related luminescence can be enhanced by using higher concentrations of very small nanoaggregates. Eventually, electroluminescent devices based on rare-earth doped Si nanoclusters will be demonstrated.


2012 ◽  
Vol 1471 ◽  
Author(s):  
Larry D. Merkle

ABSTRACTTrivalent rare earth ions in crystalline or fiber hosts are among the most successful of laser materials, but new dopant-host combinations and more detailed understanding of existing materials continue to be needed. This paper presents a few examples from the work of our team at the Army Research Laboratory, highlighting the interrelation between spectroscopic properties and laser behavior. It focuses on bulk solids, though rare-earth-doped fiber lasers are also extremely important. One system discussed is Nd:YAG, particularly concentration quenching in heavily doped ceramic YAG. Spectroscopic properties of Yb:Y2O3 and Yb:Sc2O3 help to elucidate their laser performance. Spectra indicate that Er:YAG is more promising than Er:Sc2O3 for room temperature laser operation, but that the reverse is true for operation at and somewhat above liquid nitrogen temperature.


2016 ◽  
Vol 680 ◽  
pp. 558-561
Author(s):  
Wei Yang ◽  
Qiang Li ◽  
Yan Yan Zhang ◽  
Dan Yu Jiang ◽  
Jin Feng Xia

a series of Eu(III)/Tb(III) complexes with а-thenoyl trifluoroacetone (HTTA), 8-hydroxy quinoline complexes were synthesized. The UV and fluorescence spectra of these complexes at room temperature were characterized. The results revealed that different energy transfer between rare earth ions and ligands.Keywords rare earth complexes, ultraviolet spectra, fluorescence spectra


Author(s):  
А.П. Новицкий ◽  
И.А. Сергиенко ◽  
С.В. Новиков ◽  
К.В. Кусков ◽  
Д.В. Лейбо ◽  
...  

AbstractThe  results  of  investigating  the  thermoelectric  properties of the bulk р -type oxyselenides Bi_1 –_ x Pr_ x CuSeO ( x = 0, 0.04, 0.08) and Bi_0.96La_0.04CuSeO obtained by the solid-state reaction technique are presented. The temperature dependences of the thermopower, electrical resistivity, and thermal conductivity are measured at temperatures from room temperature to 800 K. Over the whole temperature range, a decrease in the electrical resistivity and thermopower is observed with increasing substitution level, while the thermal conductivity is almost unaffected by the substitution of rare-earth elements for bismuth. Despite the nominal valence of Bi, La, and Pr being the same, the replacement of bismuth by rare-earth ions leads to an increase in the charge-carrier concentration, which may be caused by a difference in the electronic configurations of ions, resulting in a shift of the Fermi level to the valence band.


Author(s):  
H. Römer ◽  
K.-D. Luther ◽  
W. Assmus

AbstractWe describe investigations of growth of cubic zirconium dioxide single crystals doped with rare-earth ions. The cubic phase is stabilized down to room temperature by adding 12 mole% Y


Sign in / Sign up

Export Citation Format

Share Document