scholarly journals Theoretische Untersuchungen an einem Elektronenstrahlerzeuger mit Spitzenkathode / Theoretical Investigation of an Electron Gun with a Point Cathode

1978 ◽  
Vol 33 (8) ◽  
pp. 910-913 ◽  
Author(s):  
H. Rauh ◽  
D. Kern

Electron-optical properties of a gun with a point cathode are determined numerically by tracing a greater number of electron trajectories. In order to calculate the beam current density distribution, an attempt was made to describe the properties of the gun in terms of the parameters describing the initial conditions of the trajectories. Contrary to the conventional electron-optical imaging theory, the electron gun under consideration cannot be sufficiently characterized by a few aberration coefficients, since only a small fraction of the trajectories forming the electron beam would be covered by an expansion containing linear, third and fifth order terms, so that the series expansion method is not applicable.

2008 ◽  
Vol 13 (2) ◽  
pp. 263-273
Author(s):  
Svetlana Sytova

Nonlinear phenomena originating in volume free electron laser (VFEL) are investigated by methods of mathematical modelling using computer code VOLC. It was demonstrated the possibility of excitation of quasiperiodic oscillations not far from threshold values of electron beam current density and VFEL resonator length. It was investigated sensibility of numerical solution to initial conditions for different VFEL regimes of operation. Parametric maps with respect to electron beam current and detuning from synchronism condition present complicated root to chaos with windows of periodicity in VFEL. Investigation of chaotic lasing dynamics in VFEL is important in the light of experimental development of VFEL in Research Institute for Nuclear Problems.


2008 ◽  
Vol 26 (4) ◽  
pp. 619-635 ◽  
Author(s):  
V.A. Burdovitsin ◽  
E.M. Oks

AbstractThis paper presents a review of physical principles, design, and performances of plasma-cathode direct current (dc) electron beam guns operated in so called fore-vacuum pressure (1–15 Pa). That operation pressure range was not reached before for any kind of electron sources. A number of unique parameters of the e-beam were obtained, such as electron energy (up to 25 kV), dc beam current (up 0.5 A), and total beam power (up to 7 kW). For electron beam generation at these relatively high pressures, the following special features are important: high probability of electrical breakdown within the accelerating gap, a strong influence of back-streaming ions on both the emission electrode and the emitting plasma, generation of secondary plasma in the beam propagation region, and intense beam-plasma interactions that lead in turn to broadening of the beam energy spectrum and beam defocusing. Yet other unique peculiarities can occur for the case of ribbon electron beams, having to do with local maxima in the lateral beam current density distribution. The construction details of several plasma-cathode electron sources and some specific applications are also presented.


1998 ◽  
Vol 69 (2) ◽  
pp. 807-809 ◽  
Author(s):  
A. G. Nikolaev ◽  
E. M. Oks ◽  
Xiaoji Zhang ◽  
Cheng Cheng

1995 ◽  
Vol 09 (24) ◽  
pp. 1589-1594
Author(s):  
M. TIWARI ◽  
R. A. SINGH

The effect of hole–spin coupling together with spin distortion on the energy and hole correlation function have been studied in detail. Standard Green function theory and Low Temperature Series Expansion method have been utilised to get analytical results.


1992 ◽  
Vol 19 (1-2) ◽  
pp. 9-27 ◽  
Author(s):  
D. I. Nikolayev ◽  
T. I. Savyolova ◽  
K. Feldmann

The orientation distribution function (ODF) obtained by classical spherical harmonics analysis may be falsified by ghost influences as well as series truncation effects. The ghosts are a consequence of the inversion symmetry of experimental pole figures which leads to the loss of information on the “odd” part of ODF.In the present paper a new method for ODF reproduction is proposed. It is based on the superposition of Gaussian distributions satisfying the central limit theorem in the SO(3)-space as well as the ODF positivity condition. The kind of ODF determination offered here is restricted to the fit of Gaussian parameters and weights with respect to the experimental pole figures. The operating mode of the new method is demonstrated for a rolling texture of copper. The results are compared with the corresponding ones obtained by the series expansion method.


Sign in / Sign up

Export Citation Format

Share Document