Flow and Heat Transfer of Powell–Eyring Fluid due to an Exponential Stretching Sheet with Heat Flux and Variable Thermal Conductivity

2015 ◽  
Vol 70 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Ahmed M. Megahed

AbstractAn analysis was carried out to describe the problem of flow and heat transfer of Powell–Eyring fluid in boundary layers on an exponentially stretching continuous permeable surface with an exponential temperature distribution in the presence of heat flux and variable thermal conductivity. The governing partial differential equations describing the problem were transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the shooting method over the entire range of physical parameters. The effects of various parameters like the thermal conductivity parameter, suction parameter, dimensionless Powell–Eyring parameters and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. In this work, special attention was given to investigate the effect of the thermal conductivity parameter on the velocity and temperature fields above the sheet in the presence of heat flux. The numerical results were also validated with results from a previously published work on various special cases of the problem, and good agreements were seen.

2016 ◽  
Vol 14 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Ahmed M. Megahed

AbstractIn this paper, we introduce a theoretical and numerical study for the effects of thermal buoyancy and constant heat flux on the Casson fluid flow and heat transfer over an exponentially stretching sheet taking into account the effects of variable thermal conductivity, heat generation/absorption and viscous dissipation. The governing partial differential equations are transformed into coupled, non-linear ordinary differential equations by using suitable transformations. Numerical solutions to these equations are obtained by using the fourth order Runge-Kutta method with the shooting technique. The effects of various physical parameters which governing the flow and heat treansfer such as the buoyancy parameter, the thermal conductivity parameter, heat generation or absorption parameter and the Prandtl number on velocity and temperature are discussed by using graphical approach. Moreover, numerical results indicate that the local skin-friction coefficient and the local Nusselt number are strongly affected by the constant heat flux.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 475-488 ◽  
Author(s):  
Kalidas Das

Some analyses have been carried out to study the influence of suction/blowing, thermal radiation and temperature dependent fluid properties on the hydro-magnetic incompressible electrically conducting fluid flow and heat transfer over a permeable stretching surface with partial slip boundary conditions. It is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature respectively. Using the similarity transformation, the governing system of non-linear partial differential equations are transformed into non-linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0. The effects of various physical parameters on the flow and heat transfer characteristics as well as the skin friction coefficient and Nusselt number are illustrated graphically. The physical aspects of the problem are highlighted and discussed.


2013 ◽  
Vol 18 (2) ◽  
pp. 425-445 ◽  
Author(s):  
N. Kishan ◽  
B. Shashidar Reddy

The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.


2017 ◽  
Vol 378 ◽  
pp. 85-101
Author(s):  
Md. Sarwar Alam ◽  
Oluwole Daniel Makinde ◽  
Md. Abdul Hakim Khan

A numerical investigation is performed into the heat transfer and entropy generation of a variable thermal conductivity magnetohydrodynamic flow of Al2O3-water nanofluid in a vertical channel of varying width with right porous wall, which enable the fluid to enter. The effects of the Lorentz force, buoyancy force, viscous dissipation and Joule heating are considered and modeled using the transverse momentum and energy balance equations respectively. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using power series with Hermite-Padé approximation method. A stability analysis has been performed for the local rate of shear stress and Nusselt number that indicates the existence of dual solution branches. Numerical results are achieved for the fluid velocity, temperature as well as the rate of heat transfer at the wall and the entropy generation of the system. The present results are original and new for the flow and heat transfer past a channel of varying width in a nanofluid which shows that the physical parameters have significant effects on the flow field.


2019 ◽  
Vol 24 (3) ◽  
pp. 539-548
Author(s):  
M. Ferdows ◽  
M.Z.I. Bangalee ◽  
D. Liu

Abstract The problem of exponential law of steady, incompressible fluid flow in boundary layer and heat transfer are studied in an electrically conducting fluid over a semi-infinite vertical plate assuming the variable thermal conductivity in the presence of a uniform magnetic field. The governing system of equations including the continuity equation, momentum equation and energy equation have been transformed into nonlinear coupled ordinary differential equations using appropriate similarity variables. All the numerical and graphical solutions are obtained through the use of Maple software. The solutions are found to be dependent on three dimensionless parameters including the magnetic field parameter M, thermal conductivity parameter β and Prandtl number Pr. Representative velocity and temperature profiles are presented at various values of the governing parameters. The skin-friction coefficient and the rate of heat transfer are also calculated for different values of the parameters.


Author(s):  
Partner L. Ndlovu ◽  
Raseelo J. Moitsheki

AbstractIn this article, the differential transform method (DTM) is used to solve the nonlinear boundary value problems describing heat transfer in continuously moving fins undergoing convective-radiative heat dissipation. The thermal conductivity is variable and temperature dependent. The surface of the moving fin is assumed to be gray with a constant emissivity ɛ. The flow in the surrounding medium provides a constant heat transfer coefficient h over the entire surface of the moving fins. The effects of some physical parameters such as the Peclet number, Pe, thermal conductivity parameter, β, convection-conduction parameter, Nc, radiation-conduction parameter, Nr, and dimensionless convection-radiation sink temperature, θa, on the temperature distribution are illustrated and explained.


2007 ◽  
Vol 12 (1) ◽  
pp. 113-122 ◽  
Author(s):  
S. Sivasankaran

A numerical study has been made to analyze the effects of variable thermal conductivity on the natural convection of heat generating fluids contained in a square cavity with isothermal walls and the top and bottom perfectly insulated surfaces. The flow is assumed to be two-dimensional. Calculations are carried out by solving governing equations for different parameters. The flow pattern and the heat transfer characteristics inside the cavity are presented in the form of steady-state streamlines, isotherms and velocity profiles. The heat transfer rate is increased by an increase in the thermal conductivity parameter.


2021 ◽  
Vol 8 (6) ◽  
pp. 955-960
Author(s):  
M.C. Kemparaju ◽  
Bommanna Lavanya ◽  
Mahantesh M. Nandeppanavar ◽  
N. Raveendra

In this paper an examination is completed to explore the influence of variable thickness and variable thermal conductivity on MHD stream. We have considered the governing stream and heat transfer conditions as partial differential equations. These non-linear partial differential equations are changed to non-linear ordinary differential equations at that point explained numerically utilizing fourth order RK strategy with shooting procedure. The influence of governing factors on velocity and temperature is concentrated through diagrams and numerical estimations of skin frictions and wall temperature inclination are determined, classified and examined.


Author(s):  
Umar Farooq ◽  
Hassan Waqas ◽  
Taseer Muhammad ◽  
Shan Ali Khan

Abstract The nanofluid is most advantageous to enhance the heat efficiency of base fluid by submerging solid nanoparticles in it. The metals, oxides, and carbides are helpful to improve the heat transfer rate. In the present analysis, the role of the slip phenomenon in the radiative flow of hybrid nanoliquid containing SiO2 silicon dioxide and CNTs over in the porous cone is scrutinized. The behavior of the magnetic field, thermal conductivity, and thermal radiation are examined. Here the base fluid ethylene glycol water (C2H6O2−H2O) is used. Accepting similarity transformation converts the controlling partial differential equations (PDEs) into ordinary differential equations (ODEs). The numerical solution is obtained by utilizing the Lobatto-IIIa method. The significant physical flow parameters are discussed by utilizing tables and graphs. Final remarks are demonstrating the velocity profile is declined via higher magnetic parameter while boosted up for nanoparticles volume fraction. Furthermore, the thermal profile is enriching via thermal conductivity parameter, radiation parameter, and nanoparticles volume fraction.


Sign in / Sign up

Export Citation Format

Share Document