scholarly journals Electrically Conducting Flow through Exponential Power Law Fluid with Variable Thermal Conductivity

2019 ◽  
Vol 24 (3) ◽  
pp. 539-548
Author(s):  
M. Ferdows ◽  
M.Z.I. Bangalee ◽  
D. Liu

Abstract The problem of exponential law of steady, incompressible fluid flow in boundary layer and heat transfer are studied in an electrically conducting fluid over a semi-infinite vertical plate assuming the variable thermal conductivity in the presence of a uniform magnetic field. The governing system of equations including the continuity equation, momentum equation and energy equation have been transformed into nonlinear coupled ordinary differential equations using appropriate similarity variables. All the numerical and graphical solutions are obtained through the use of Maple software. The solutions are found to be dependent on three dimensionless parameters including the magnetic field parameter M, thermal conductivity parameter β and Prandtl number Pr. Representative velocity and temperature profiles are presented at various values of the governing parameters. The skin-friction coefficient and the rate of heat transfer are also calculated for different values of the parameters.

2015 ◽  
Vol 70 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Ahmed M. Megahed

AbstractAn analysis was carried out to describe the problem of flow and heat transfer of Powell–Eyring fluid in boundary layers on an exponentially stretching continuous permeable surface with an exponential temperature distribution in the presence of heat flux and variable thermal conductivity. The governing partial differential equations describing the problem were transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the shooting method over the entire range of physical parameters. The effects of various parameters like the thermal conductivity parameter, suction parameter, dimensionless Powell–Eyring parameters and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. In this work, special attention was given to investigate the effect of the thermal conductivity parameter on the velocity and temperature fields above the sheet in the presence of heat flux. The numerical results were also validated with results from a previously published work on various special cases of the problem, and good agreements were seen.


2007 ◽  
Vol 12 (1) ◽  
pp. 113-122 ◽  
Author(s):  
S. Sivasankaran

A numerical study has been made to analyze the effects of variable thermal conductivity on the natural convection of heat generating fluids contained in a square cavity with isothermal walls and the top and bottom perfectly insulated surfaces. The flow is assumed to be two-dimensional. Calculations are carried out by solving governing equations for different parameters. The flow pattern and the heat transfer characteristics inside the cavity are presented in the form of steady-state streamlines, isotherms and velocity profiles. The heat transfer rate is increased by an increase in the thermal conductivity parameter.


2001 ◽  
Vol 79 (7) ◽  
pp. 1031-1038 ◽  
Author(s):  
E M Abo-Eldahab ◽  
M S El Gendy

In the present study, free-convection and heat-transfer behavior of an electrically conducting fluid is investigated near a stretching sheet embedded in a non-Darcian medium. The temperature of the stretching sheet is varied. The sheet is stretched linearly with variable velocity and temperature. Boundary-layer equations are derived. The resulting approximate nonlinear ordinary differential equations are solved numerically. Velocity and temperature profiles as well as the local Nusselt number and skin-friction coefficient are computed for various values of the magnetic field, the Prandtl number, the free convective parameter, and the inertia parameter. PACS No.: 44.30+v


Author(s):  
Tasawar Hayat ◽  
Farhat Bibi ◽  
Ambreen Afsar Khan ◽  
Akbar Zaman ◽  
Ahmed Alsaedi

This article communicates peristalsis of Jeffrey material in curved geometry. Here, material has temperature-dependent thermal conductivity and viscosity. Mathematical modeling of an inclined magnetic field in curved configuration has been presented in this article. Irreversibility effects have been analyzed through entropy generation. Slip conditions are entertained both for velocity and thermal fields. Problem is first reduced in wave frame and then lubrication approach has been utilized. Numerical solution of dimensionless problem is obtained and important parameters of curiosity are examined. It is noticed that velocity enhances for higher viscosity whereas temperature decreases for higher thermal conductivity coefficient. Velocity of the flow is maximum for inclination of magnetic field to be zero and it is minimum for [Formula: see text] Heat transfer parameter enhances both for thermal conductivity parameter and Hartmann number. Temperature is high for curved configuration when compared with straight channel. It is observed that entropy remains unchanged in center of the channel and it is maximum near the channel walls. Entropy generation decays near the channel walls by higher viscosity and thermal conductivity parameters. However, entropy is more for higher inclination of magnetic field.


2014 ◽  
Vol 18 (2) ◽  
pp. 431-442 ◽  
Author(s):  
Mohsen Torabi ◽  
Hessameddin Yaghoobi

Heat transfer in a straight fin with a step change in thickness and variable thermal conductivity which is losing heat by convection to its surroundings is developed via differential transformation method (DTM) and variational iteration method (VIM). In this study, we compare DTM and VIM results, with those of homotopy perturbation method (HPM) and an accurate numerical solution to verify the accuracy of the proposed methods. As an important result, it is depicted that the DTM results are more accurate in comparison with those obtained by VIM and HPM. After these verifications the effects of parameters such as thickness ratio, ?, dimensionless fin semi thickness,?, length ratio, ?, thermal conductivity parameter, ?, Biot number, Bi, on the temperature distribution are illustrated and explained.


2019 ◽  
Vol 15 (5) ◽  
pp. 871-894 ◽  
Author(s):  
Jawad Raza ◽  
Fateh Mebarek-Oudina ◽  
B. Mahanthesh

Purpose The purpose of this paper is to present an exploration of multiple slips and temperature dependent thermal conductivity effects on the flow of nano Williamson fluid over a slendering stretching plate in the presence of Joule and viscous heating aspects. The effectiveness of nanoparticles is deliberated by considering Brownian moment and thermophoresis slip mechanisms. The effects of magnetism and radiative heat are also deployed. Design/methodology/approach The governing partial differential equations are non-dimensionalized and reduced to multi-degree ordinary differential equations via suitable similarity variables. The subsequent non-linear problem treated for numerical results. To measure the amount of increase/decrease in skin friction coefficient, Nusselt number and Sherwood number, the slope of linear regression line through the data points are calculated. Statistical approach is implemented to analyze the heat transfer rate. Findings The results show that temperature distribution across the flow decreases with thermal conductivity parameter. The maximum friction factor is ascertained at stronger magnetic field. Originality/value In the current paper, the magneto-nano Williamson fluid flow inspired by a stretching sheet of variable thickness is examined numerically. The rationale of the present study is to generalize the studies of Mebarek-Oudina and Makinde (2018) and Williamson (1929).


Author(s):  
Partner L. Ndlovu ◽  
Raseelo J. Moitsheki

AbstractIn this article, the differential transform method (DTM) is used to solve the nonlinear boundary value problems describing heat transfer in continuously moving fins undergoing convective-radiative heat dissipation. The thermal conductivity is variable and temperature dependent. The surface of the moving fin is assumed to be gray with a constant emissivity ɛ. The flow in the surrounding medium provides a constant heat transfer coefficient h over the entire surface of the moving fins. The effects of some physical parameters such as the Peclet number, Pe, thermal conductivity parameter, β, convection-conduction parameter, Nc, radiation-conduction parameter, Nr, and dimensionless convection-radiation sink temperature, θa, on the temperature distribution are illustrated and explained.


2014 ◽  
Vol 19 (1) ◽  
pp. 27-37 ◽  
Author(s):  
M.T. Darvishi ◽  
F. Kani ◽  
R.S.R. Gorla

Abstract In this study, the effects of radiation and convection heat transfer in a radial porous fin are considered. The geometry considered is that of a rectangular profile fin. The porous fin allows the flow to infiltrate through it and solid-fluid interaction takes place. This study is performed using Darcy’s model to formulate the heat transfer equation. The thermal conductivity is assumed to be a function of temperature. The effects of the natural convection parameter Nc , radiation parameter Nr and thermal conductivity parameter m on the dimensionless temperature distribution and heat transfer rate are discussed. The results suggest that the radiation transfers more heat than a similar model without radiation


Author(s):  
Umar Farooq ◽  
Hassan Waqas ◽  
Taseer Muhammad ◽  
Shan Ali Khan

Abstract The nanofluid is most advantageous to enhance the heat efficiency of base fluid by submerging solid nanoparticles in it. The metals, oxides, and carbides are helpful to improve the heat transfer rate. In the present analysis, the role of the slip phenomenon in the radiative flow of hybrid nanoliquid containing SiO2 silicon dioxide and CNTs over in the porous cone is scrutinized. The behavior of the magnetic field, thermal conductivity, and thermal radiation are examined. Here the base fluid ethylene glycol water (C2H6O2−H2O) is used. Accepting similarity transformation converts the controlling partial differential equations (PDEs) into ordinary differential equations (ODEs). The numerical solution is obtained by utilizing the Lobatto-IIIa method. The significant physical flow parameters are discussed by utilizing tables and graphs. Final remarks are demonstrating the velocity profile is declined via higher magnetic parameter while boosted up for nanoparticles volume fraction. Furthermore, the thermal profile is enriching via thermal conductivity parameter, radiation parameter, and nanoparticles volume fraction.


Sign in / Sign up

Export Citation Format

Share Document