First-Principles Calculations of the Mechanical and Elastic Properties of 2Hc- and 2Ha-WS2/CrS2 Under Pressure

2016 ◽  
Vol 71 (6) ◽  
pp. 517-524 ◽  
Author(s):  
Hua-Long Jiang ◽  
Song-Hao Jia ◽  
Da-Wei Zhou ◽  
Chun-Ying Pu ◽  
Fei-Wu Zhang ◽  
...  

AbstractBy utilizing the first-principles method, the pressure-induced effects on phase transition, mechanical stability, and elastic properties of WS2/CrS2 are investigated in the pressure range from 0 to 80 GPa. Transitions from 2Hc to 2Ha for WS2 and CrS2 are found to occur at 17.5 and 25 GPa, respectively. It is found that both 2Ha and 2Hc phases of WS2 and CrS2 meet the mechanical stability criteria up to 80 GPa, suggesting that those structures are mechanically stable. The bulk and shear modulus anisotropy of the two phases of WS2 and CrS2 decrease rapidly under pressure and, finally, trend to isotropy. With increasing pressure, the elastic moduli (Y, B, and G), sound velocities (vs, vp, vm), and Debye temperatures (Θ) of 2Ha and 2Hc of WS2 and CrS2 increase monotonously. Moreover, the Debye temperature (Θ) of 2Hc phase is higher than that of 2Ha phase for both WS2 and CrS2. The bulk, shear, and Young’s modulus, Poisson coefficient, and brittle/ductile behaviour are estimated. The percentages of anisotropy in compressibility and shear and the ratio of bulk to shear modulus (B/G) are also studied.

2008 ◽  
Vol 19 (08) ◽  
pp. 1269-1275 ◽  
Author(s):  
YANLING LI ◽  
ZHI ZENG

The elastic properties of rutile transition metal dioxides XO2 ( X = Ru , Rh , Os , and Ir ) are investigated using first-principles calculations based on density functional theory. Elastic constants, bulk modulus, shear modulus, and Young's modulus as well as Possion ratio are given. OsO 2 and IrO 2 show strong incompressibility. The hardness estimated for these dioxides shows that they are not superhard solids. The obtained Debye temperatures are comparative to those of transition metal dinitrides or diborides.


2009 ◽  
Vol 1224 ◽  
Author(s):  
Yunjiang Wang ◽  
Chongyu Wang

AbstractThe effect of alloying elements Ta, Mo, W, Cr, Re, Ru, Co, and Ir on the elastic properties of both γ-Ni and γ′-Ni3Al is studied by first-principles method. Results for lattice properties, elastic moduli and the ductile/brittle behaviors are all presented. Our calculated values agree well with the existing experimental observations. Results show all the additions decrease the lattice misfit between and γ′ phases. Different alloying elements are found to have different effect on the elastic moduli of γ-Ni. Whereas all the alloying elements slightly increase the moduli of γ′-Ni3Al expect Co. Both of the two phases are becoming more brittle with alloying elements, but Co is excepted. The electronic structures of γ′ phase alloyed with different elements are provided as example to elucidate the different strengthening mechanisms.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Jinzhong Tian ◽  
Yuhong Zhao ◽  
Shengjie Ma ◽  
Hua Hou

In present work, the effects of alloying elements X (X = Zn, Zr and Ag) doping on the phase stability, elastic properties, anisotropy and Debye temperature of Al3Li were studied by the first-principles method. Results showed that pure and doped Al3Li can exist and be stable at 0 K. Zn and Ag elements preferentially occupy the Al sites and Zr elements tend to occupy the Li sites. All the Cij obey the mechanical stability criteria, indicating the mechanical stability of these compounds. The overall anisotropy decreases in the following order: Al23Li8Ag > Al3Li > Al23Li8Zn > Al24Li7Zr, which shows that the addition of Zn and Zr has a positive effect on reducing the anisotropy of Al3Li. The shear anisotropic factors for Zn and Zr doped Al3Li are very close to one, meaning that elastic moduli do not strongly depend on different shear planes. For pure and doped Al3Li phase, the transverse sound velocities νt1 and νt2 among the three directions are smaller than the longitudinal sound velocity νl. Moreover, only the addition of Zn is beneficial to increasing the ΘD of Al3Li among the three elements.


2013 ◽  
Vol 664 ◽  
pp. 672-676
Author(s):  
De Ming Han ◽  
Gang Zhang ◽  
Li Hui Zhao

We present first-principles investigations on the elastic properties of XBi (X=Ho, Er) compounds. Basic physical properties, such as lattice constant, elastic constants (Cij), isotropic shear modulus (G), bulk modulus (B), Young’s modulus (Y), Poisson’s ratio (υ), and Anisotropy factor (A) are calculated. The calculated energy band structures show that the two compounds possess semi-metallic character. We hope that these results would be useful for future work on two compounds.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1640 ◽  
Author(s):  
Yangqi Ji ◽  
Xiaoli Yuan

The elastic properties and electronic properties of MxNy (M = Ti, Zr) TiN, Ti2N, Zr3N4, ZrN with different structures have been investigated using density functional theory. Through the calculation of the elastic constants, it was found that all of these structures meet the mechanical stability except for ZrN with space group P63mc. Their mechanical properties are studied by a comparison of various parameters. The stiffness of TiN is larger than that of ZrN with space group Fm 3 ¯ m. Ti2N’s stiffness with space group I41/amdz is larger than Ti2N with space group P42/mnm. Zr3N4’s stiffness with space group Pnam is largest in three structures of Zr3N4. TiN, Ti2N and ZrN are non-central force, Zr3N4 is central force. TiN and ZrN with space group Fm 3 ¯ m are brittle, and TiN is brittler than ZrN with space group Fm 3 ¯ m. The two kinds of Ti2N are brittle and Ti2N with space group I41/amdz is larger. Three structures of Zr3N4 are tough and Zr3N4 with space group I 4 ¯ 3d is the toughest. Meanwhile, the electronic properties of TiN, Ti2N, Zr3N4 and ZrN were calculated, possible superconducting properties of the studied materials were predicted.


2021 ◽  
pp. 2150231
Author(s):  
Jing Bai ◽  
Jinlong Wang ◽  
Shaofeng Shi ◽  
Xinzeng Liang ◽  
Yiqiao Yang ◽  
...  

The parent phase structure of Mn2NiGa has always been controversial in the past decade. The ground state energy of the conventional cubic structure is higher than that of the Hg2CuTi structure, while the widely accepted Hg2CuTi structure for the parent phase does not satisfy with the mechanical stability criteria. In this work, a new configuration was found by the first-principles calculations. Its total energy is lower than that of the Hg2CuTi structure. Moreover, the elastic constants of this new structure can satisfy the criteria of mechanical stability. This suggests that the newly proposed structure is more likely than Hg2CuTi-type for the parent phase of the Mn2NiGa alloys.


2018 ◽  
Vol 32 (24) ◽  
pp. 1850262 ◽  
Author(s):  
Yali Wu ◽  
Xuefeng Guo

First-principles method based on density functional theory has been performed to study the lattice structures, elastic properties, Debye temperatures, electronic properties and phase stability of Ni–Sc intermetallic compounds systematically. The calculated lattice parameters are close to available experimental data. The analysis results of formation enthalpies indicate that the Ni–Sc compounds are all thermodynamically stable and NiSc is the most stable. Besides, these compounds are also mechanically stable according to the mechanical stability criterion. The obtained shear modulus G and Young’s modulus E show that Ni5Sc is the stiffest and the most covalent compound. The discussion about G/B (the ratio of shear modulus to bulk modulous), Poisson’s ratio [Formula: see text] and Cauchy pressure demonstrate that all Ni–Sc compounds are ductile and NiSc2 is the most ductile phase, followed by NiSc. The results of Debye temperatures indicate that Ni5Sc has the stronger covalent bonds than others. Finally, the electronic properties are investigated to reveal the underlying mechanical properties.


2019 ◽  
Vol 33 (20) ◽  
pp. 1950227
Author(s):  
Rui Zhang ◽  
Qun Wei ◽  
Bing Wei ◽  
Ruike Yang ◽  
Ke Cheng ◽  
...  

The structural, mechanical and electronic properties of recently reported superhard material C[Formula: see text] are studied by first-principles calculations. The unit cell of C[Formula: see text] is composed of 28 carbon atoms and all sp3 hybridized bonds. From 0 GPa to 100 GPa, C[Formula: see text] satisfies the mechanical stability criteria and the phonon spectrum of C[Formula: see text] has no imaginary frequency, which means that C[Formula: see text] is mechanically and dynamically stable. The results of hardness calculated show that C[Formula: see text] is a potential superhard material with the Vickers hardness of 84.0 GPa. By analyzing the elastic anisotropy, we found that elastic anisotropy of C[Formula: see text] increases with pressure. The calculations of band structure demonstrates that C[Formula: see text] is an indirect bandgap semiconductor with the gap of 4.406 eV. These analyses demonstrate C[Formula: see text] is a superhard semiconductor material.


2018 ◽  
Vol 32 (10) ◽  
pp. 1850065 ◽  
Author(s):  
Jinming Li ◽  
Xiaobo Li ◽  
Haiyun Gao ◽  
Dian Peng

The content of this study is to analyze the electronic structure and elastic properties that the different structures of Mo2NiB2 and doping with V of the tetragonal M3B2 (Mo2Ni[Formula: see text]V[Formula: see text]B2 and Mo[Formula: see text]Ni[Formula: see text]V[Formula: see text]B2) (x = 0.25, 0.5, 0.75 and y = 0.125, 0.25, 0.375) by first-principles calculations based on density functional theory (DFT) combined with the projection-plus-wave method. But the calculated formation energy shows that V atoms prefer to substitute the Mo and Ni atoms of the tetragonal Mo2NiB2. Moreover, with the increase of V content, the formation enthalpy of tetragonal Mo2NiB2 is reduced, and the formation enthalpy of Mo[Formula: see text]Ni[Formula: see text]V[Formula: see text]B2 is the least as −53.23 kJ/mol. The calculated elastic constant suffices the condition of mechanical stability, indicate that they are stable. The calculated elastic modulus illustrates that Mo2NiB2 having better mechanical properties when V elements are at Mo and Ni sites instead of Ni sites. The calculated and analyzed density of states of Mo[Formula: see text]Ni[Formula: see text]V[Formula: see text]B2 has the smallest the density of states at the Fermi level indicating that it has the more stable structure. For the theoretical analysis of the first-principles calculations, the addition of 15 atom% of the V and V doping modes of Mo and Ni are preferentially replaced by V atoms of Mo2NiB2 ternary boride has the best performance.


Sign in / Sign up

Export Citation Format

Share Document