The Reaction and Microscopic Electron Properties from Dynamic Evolutions of Condensed-Phase RDX Under Shock Loading

2020 ◽  
Vol 75 (4) ◽  
pp. 285-291
Author(s):  
Jiao-Nan Yuan ◽  
Hai-Chao Ren ◽  
Yong-Kai Wei ◽  
Wei-Sen Xu ◽  
Guang-Fu Ji ◽  
...  

AbstractMicroscopic electron properties of α-hexahydro-1,3,5-trinitro-1,3,5-triazine (α-RDX) with different shock wave velocities have been investigated based on molecular dynamics together with multi-scale shock technique. The studied shock wave velocities are 8, 9 and 10 km ⋅ s−1. It has been said that the shock sensitivity and reaction initiation of explosives are closely relevant with their microscopic electron properties. The reactions, including the reaction products, which are counted from the trajectory during the simulations are analysed first. The results showed that the number of the products strictly rely on shock wave velocities. The reaction rates and decomposition rates are also studied, which showed the differences between the different shock velocities. The results of electron properties show that α-RDX is a wide-gap insulator in the ground state and the metallisation conditions of shocked RDX are determined, which are lower than under-static high pressure.

2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Anatolii Popov ◽  
Illia Kapitanov ◽  
Anna Serdyuk ◽  
Aleksandr Sumeiko

The review analyzes issues related to the reactivity of nucleophiles and the manifestation of the α-effect in substitution processes at electron-deficient centers. The fundamental aspects of this phenomenon, as well as the possibilities and prospects of using α-nucleophiles in systems for the highly efficient degradation of substrates - ecotoxicants of various natures, are discussed. In the first part of the review such aspects were observed: inorganic α-nucleophiles as the most effective class of reagents for the decomposition of organic phosphorus compounds, hydroxylamine, its N-alkyl derivatives, oximes, and hydroxamic acids, reactivity of the НОО– anion in the processes of acyl group transfer, reactivity of oximate ions, inorganic α-nucleophiles as the basis of formulations for the degradation of neurotoxins, vesicants, and organophosphorus pesticides, design of inhibited acetylcholinesterase reactivators based on hydroxylamine derivatives, ways of structural modification of α-nucleophiles and systems based on them. The data on the reactivity of typical inorganic α-nucleophiles in the cleavage of acyl-containing substrates, including phosphorus acid esters, which provide abnormally high reaction rates in comparison with other supernucleophiles, are analyzed. Various types of such α-nucleophiles, features of their structure and reactivity are considered. It was shown that an important feature of hydroxylamine, oximes, and hydroxamic acids is the presence of a fragment with adjacent O and N (–N – O – H) atoms containing one or more lone electron pairs, which determines their belonging to the class of α-nucleophiles. It has been shown that a many of factors can be responsible for the manifestation of the α-effect and its magnitude, the main of which is the destabilization of the ground state of the nucleophile due to repulsion of lone electron pairs, stabilization of the transition state, the unusual thermodynamic stability of reaction products, solvation effects of the solvent, type of hybridization of the electrophilic center, etc.


Author(s):  
Toshiaki Watanabe ◽  
Hironori Maehara ◽  
Asuka Oda ◽  
Shigeru Itoh

In the food industry, it is hoping high value-aided product and the increase in efficiency of food processing. On the other hand, we get an experimental result that the load of the shock wave improves an extraction of food, and soften food. But, the safe and high efficiency pressure vessel for the processing is necessary to apply these technologies to the food processing field actually. Therefore, we are planning the development of the pressure vessel for food processing. The fundamental data of the shock loading to food are necessary in order to make suitable vessel. As for these data, it is variety the specifications required by the kind of food and effect to expect. We report the result that shock wave loading was done to various food.


Author(s):  
S. Taverniers ◽  
G. B. Jacobs ◽  
V. Fountoulakis ◽  
O. Sen ◽  
H. S. Udaykumar
Keyword(s):  

Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 421 ◽  
Author(s):  
Jun Zhang ◽  
Xiang Fang ◽  
Yuchun Li ◽  
Zhongshen Yu ◽  
Junyi Huang ◽  
...  

To analyze the mechanical properties and reaction characteristics of Al-ZrH2-PTFE (aluminum-zirconium hydride-polytetrafluoroethylene) composites under quasi-static compression, five types of specimens with different ZrH2 contents (0%, 5%, 10%, 20% and 30%) were prepared by molding-vacuum sintering. The true stress-strain curves and reaction rates of the different specimens were measured using quasi-static compression. The specific reaction processes were recorded by a high-speed camera. The corresponding reaction products were characterized by the XRD phase analysis, the calorific value was tested by a Calorimeter, and the reaction mechanism was analyzed. According to the results, the strength of the composites increased first and then decreased with the increase in the content of ZrH2. It reached a maximum of 101.01 MPa at 5%. Violent reaction occurred, and special flames were observed during the reaction of the specimens with 5% ZrH2. With the increase in the content of ZrH2, the chemical reaction was hard to induce due to the reduction in strength and toughness of composites. The reaction mechanism of Al/ZrH2/PTFE reveals that high temperatures at crack tip induced the reaction of Al and PTFE. Subsequently, ZrH2 decomposed to release hydrogen and generate ZrC. Calorimetric experiment shows that the calorific value of Al/ZrH2/PTFE with 20% ZrH2 is higher than that of Al/PTFE. The findings verify the potential of ZrH2 as an energetic additive for the enhancement of strength and release of the energy of the composites.


2020 ◽  
Vol 20 (4) ◽  
pp. 1941-1959 ◽  
Author(s):  
Haiyan Li ◽  
Matthieu Riva ◽  
Pekka Rantala ◽  
Liine Heikkinen ◽  
Kaspar Daellenbach ◽  
...  

Abstract. The capabilities of the recently developed Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF) are reported for the first time based on ambient measurements. With the deployment of the Vocus PTR-TOF, we present an overview of the observed gas-phase (oxygenated) molecules in the French Landes forest during summertime 2018 and gain insights into the atmospheric oxidation of terpenes, which are emitted in large quantities in the atmosphere and play important roles in secondary organic aerosol production. Due to the greatly improved detection efficiency compared to conventional PTR instruments, the Vocus PTR-TOF identifies a large number of gas-phase signals with elemental composition categories including CH, CHO, CHN, CHS, CHON, CHOS, and others. Multiple hydrocarbons are detected, with carbon numbers up to 20. Particularly, we report the first direct observations of low-volatility diterpenes in the ambient air. The diurnal cycle of diterpenes is similar to that of monoterpenes and sesquiterpenes but contrary to that of isoprene. Various types of terpene reaction products and intermediates are also characterized. Generally, the more oxidized products from terpene oxidations show a broad peak in the day due to the strong photochemical effects, while the less oxygenated products peak in the early morning and/or in the evening. To evaluate the importance of different formation pathways in terpene chemistry, the reaction rates of terpenes with main oxidants (i.e., hydroxyl radical, OH; ozone, O3; and nitrate radical, NO3) are calculated. For the less oxidized non-nitrate monoterpene oxidation products, their morning and evening peaks have contributions from both O3- and OH-initiated monoterpene oxidation. For the monoterpene-derived organic nitrates, oxidations by O3, OH, and NO3 radicals all contribute to their formation, with their relative roles varying considerably over the course of the day. Through a detailed analysis of terpene chemistry, this study demonstrates the capability of the Vocus PTR-TOF in the detection of a wide range of oxidized reaction products in ambient and remote conditions, which highlights its importance in investigating atmospheric oxidation processes.


Author(s):  
Diethard K. Böhme

An account is provided of the extraordinary features of buckminster fullerene cations and their chemistry that we discovered in our Ion Chemistry Laboratory at York University (Canada) during a ‘golden’ period of research in the early 1990s, just after C 60 powder became available. We identified new chemical ways of C 60 ionization and tracked novel chemistry of C 60 n + as a function of charge state ( n =1–3) with some 50 different reagent molecules. We found that multiple charges enhance reaction rates and diversify reaction products and mechanisms. Strong electrostatic interactions with reagent molecules were seen to reduce barriers to carbon surface bonding and charge-separation reactions, while intramolecular Coulomb repulsion appeared to localize charge on the surface or the substituent and so influence higher order chemistry, including ‘spindle’, ‘star’, ‘fuzzy ball’, ‘ball-and-chain’ and dimer ion formation. We introduced the notion of ‘apparent’ gas-phase acidity with measurements of proton-transfer reactions of multiply charged fullerene cations. We also explored the attachment of atomic metal cations to C 60 and their subsequent reactions. All these findings were applied to the possible chemistry of fullerene cations in the interstellar medium with a focus on multiply charged fullerene ion formation and the intervention of fullerene cations in fullerene derivatization and molecular synthesis, with a view to their possible future detection. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


Sign in / Sign up

Export Citation Format

Share Document