Crystallographic Data for the High-Pressure Phases CsClO4 IV and CsBF4 IV

1976 ◽  
Vol 31 (11) ◽  
pp. 1456-1458 ◽  
Author(s):  
P. W. Richter ◽  
E. Whalley ◽  
C. W. F. T. Pistorius

The high-pressure phases CsClO4 IV and CsBF4 IV have been quenched to atmospheric pressure at 100°K. The powder patterns can be indexed on the basis of tetragonal cells with a0 = 12.965, 12.728 Å, c0 = 5.230, 5.126 Å, respectively, containing eight formula weights. The cell volumes are in excellent agreement with the values expected from direct measurements of the III (barite)/IV transition volume changes. Arguments are advanced to show that these high-pressure phases, slightly more densely packed than the scheelite structure, probably contain the large cations in eightfold sites, the smaller ones in tetrahedral sites, and have cation-cation coordination numbers of approximately eight

2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Ricardo Gobato ◽  
Alireza Heidari

An “explosive extratropical cyclone” is an atmospheric phenomenon that occurs when there is a very rapid drop in central atmospheric pressure. This phenomenon, with its characteristic of rapidly lowering the pressure in its interior, generates very intense winds and for this reason it is called explosive cyclone, bomb cyclone. With gusts recorded of 116 km/h, atmospheric phenomenon – “cyclone bomb” (CB) hit southern Brazil on June 30, the beginning of winter 2020, causing destruction in its influence over. One of the cities most affected was Chapecó, west of the state of Santa Catarina. The satellite images show that the CB generated a low pressure (976 mbar) inside it, generating two atmospheric currents that moved at high speed. In a northwest-southeast direction, Bolivia and Paraguay, crossing the states of Parana and Santa Catarina, and this draft that hit the south of Brazil, which caused the destruction of the affected states.  Another moving to Argentina, southwest-northeast direction, due to high area of high pressure (1022 mbar). Both enhanced the phenomenon.


1987 ◽  
Vol 105 ◽  
Author(s):  
E. C. Frey ◽  
N. R. Parikh ◽  
M. L. Swanson ◽  
M. Z. Numan ◽  
W. K. Chu

AbstractWe have studied oxidation of various Si samples including: Ge implanted Si, CVD and MBE grown Si(0.4–4% Ge) alloys, and MBE grown Si-Si(Ge) superlattices. The samples were oxidized in pyrogenic steam (800–1000°C, atmospheric pressure) and at low temperature and high pressure (740°C, 205 atm of dry O2). The oxidized samples were analyzed with RBS/channeling and ellipsometry.An enhanced oxidation rate was seen for all Ge doped samples, compared with rates for pure Si. The magnitude of the enhancement increased with decreasing oxidation temperature. For steam oxidations the Ge was segregated from the oxide and formed an epitaxial layer at the Si-SiO2 interface; the quality of the epitaxy was highest for the highest oxidation temperatures. For high pressure oxidation the Ge was trapped in the oxide and the greatest enhancement in oxidation rate (>100%) was observed.


2008 ◽  
Vol 26 (4) ◽  
pp. 605-617 ◽  
Author(s):  
V.F. Tarasenko ◽  
E.H. Baksht ◽  
A.G. Burachenko ◽  
I.D. Kostyrya ◽  
M.I. Lomaev ◽  
...  

AbstractThis paper reports on the properties of a supershort avalanche electron beam generated in the air or other gases under atmospheric pressure and gives the analysis of a generation mechanism of supershort avalanche electron beam, as well as methods of such electron beams registration. It is reported that in the air under the pressure of 1 atm, a supershort (<100 ps) avalanche electron beam is formed in the solid angle more than 2π steradian. The electron beam has been obtained behind a 45 µm thick Al-Be foil in SF6 and Xe under the pressure of 2 atm, and in He, under the pressure of about 15 atm. It is shown that in SF6 under the high pressure (>1 atm) duration (full width at half maximum) of supershort avalanche electron beam pulse is about 150 ps.


2021 ◽  
Vol 86 ◽  
pp. 103738
Author(s):  
Xi-Yue Li ◽  
Dong-Liang Zhong ◽  
Peter Englezos ◽  
Yi-Yu Lu ◽  
Jin Yan ◽  
...  

2006 ◽  
Vol 12 (3) ◽  
pp. 159-163
Author(s):  
Mateja Primozic ◽  
Maja Habulin ◽  
Muzafera Paljevac ◽  
Zeljko Knez

The enzyme-catalyzed hydrolysis of carboxy-methyl cellulose (CMC) was performed in three different types of reactors; in a batch stirred-tank reactor (BSTR) operating at atmospheric pressure, in a high-pressure batch stirred-tank reactor (HP BSTR) and in a high-pressure continuous tubular-membrane reactor (HP CTMR). In the high-pressure reactors aqueous SC CO2 was used as the reaction medium. The aim of our research was optimization of the reaction parameters for reaction performance. All the reactions were catalyzed by cellulase from Humicola insolens. Glucose production in the high-pressure batch stirred-tank reactor was faster than in the BSTR at atmospheric pressure. The optimal temperature for the reaction performed in the BSTR at atmospheric pressure was 30?C, while the optimal temperature for the reaction performed in SC CO2 was 32?C. The influence of the application of tubular ceramic membranes in the high-pressure reaction system was studied on the model reaction of CMC hydrolysis at atmospheric pressure and in SC CO2. The reaction was catalyzed by cellulase from Humicola insolens covalently linked to the surface of the ceramic membrane. The hydrolysis of CMC in SC CO2 and at atmospheric pressure was performed for a long time period. The reaction carried out in SC CO2 was more productive than the reaction performed at atmospheric pressure.


Author(s):  
W. S. Cheung ◽  
G. J. M. Sims ◽  
R. W. Copplestone ◽  
J. R. Tilston ◽  
C. W. Wilson ◽  
...  

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. A flame transfer function describes the change in the rate of heat release in response to perturbations in the inlet flow as a function of frequency. It is a quantitative assessment of the susceptibility of combustion to disturbances. The resulting fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. Flame transfer functions for LPP combustion are poorly understood at present but are crucial for predicting combustion oscillations. This paper describes an experiment designed to measure the flame transfer function of a simple combustor incorporating realistic components. Tests were conducted initially on this combustor at atmospheric pressure (1.2 bar and 550 K) to make an early demonstration of the combustion system. The test rig consisted of a plenum chamber with an inline siren, followed by a single LPP premixer/duct and a combustion chamber with a silencer to prevent natural instabilities. The siren was used to induce variable frequency pressure/acoustic signals into the air approaching the combustor. Both unsteady pressure and heat release measurements were undertaken. There was good coherence between the pressure and heat release signals. At each test frequency, two unsteady pressure measurements in the plenum were used to calculate the acoustic waves in this chamber and hence estimate the mass-flow perturbation at the fuel injection point inside the LPP duct. The flame transfer function relating the heat release perturbation to this mass flow was found as a function of frequency. The same combustor hardware and associated instrumentation were then used for the high pressure (15 bar and 800 K) tests. Flame transfer function measurements were taken at three combustion conditions that simulated the staging point conditions (Idle, Approach and Take-off) of a large turbofan gas turbine. There was good coherence between pressure and heat release signals at Idle, indicating a close relationship between acoustic and heat release processes. Problems were encountered at high frequencies for the Approach and Take-off conditions, but the flame transfer function for the Idle case had very good qualitative agreement with the atmospheric-pressure tests. The flame transfer functions calculated here could be used directly for predicting combustion oscillations in gas turbine using the same LPP duct at the same operating conditions. More importantly they can guide work to produce a general analytical model.


Sign in / Sign up

Export Citation Format

Share Document