Synthesis, Crystal Structure and Electrochemistry of μ-Acetatodi-μ-hydroxo-bis[(1,4,7-triazacyclononane)ruthenium(III)]-tris-iodide. Characterization of Some Ru(II)—Ru(III) Mixed Valence Species

1984 ◽  
Vol 39 (10) ◽  
pp. 1335-1343 ◽  
Author(s):  
Karl Wieghardt ◽  
Willy Herrmann ◽  
Martin Koppen ◽  
Ibrahim Jibril ◽  
Gottfried Hüttner

A series of mononuclear complexes of ruthenium containing the cyclic triamine ligand 1,4,7-triazacyclononane ([9]aneN3 = L; C6H15N3) have been prepared: [RuIIL (dmso)2Cl]Cl (dmso = dimethyl sulfoxide), [RuIIILX3] (X = C1- , Br-), [RuL2](PF6)2, [RuL(C2O4)I]. Hydrolyses of RuLCl3 under a variety of reaction conditions afford dinuclear species:[RuIII2L2(μ-OH)2(μ-CH3CO2)]I3·H2O , [RuIII2L2(μ-OH)2Cl2](PF6)2, and the mixed-valence species [Ru2L2(μ-Cl)3](PF6)2. The complex [Ru2L2(μ-OH)2(μ-CH3CO2)]I3-H2O has been characterized by a single-crystal X-ray diffraction study. The compound crystallizes in the monoclinic space group P21/c with a = 14.70(1) Å , b = 19.00(1) Å , c = 9.714(7) Å , β = 99.62(7)°, and V = 2674 Å3, dcalcd = 2.37 g cm-3 for Z = 4, and mol wt 952.3. The structure was solved by direct methods using 2519 unique reflections with I > 2σ(I). Final residuals were R1 = 0.0615 and R2 = 0.075. The structure consists of μ-hydroxo- and μ-acetato- bridged dinuclear cations and iodide anions. The observed diamagnetism and a short Ru-Ru bond distance of 2.572(3) Å are indicative of a Ru-Ru single bond. The electrochemical properties of [Ru2L2(μ-OH)2(μ-CH3CO2)]3+ and [Ru2L2(μ-Cl)3]2+ have been investigated by cyclic voltammetry, and by coulometry. Two one-electron redox processes have been identified for both complexes the first of which exhibits a reversible wave, whereas the second wave at more negative potentials is irreversible. The blue mixed valence species [Ru2L2(μ-OH)2(μ-CH3CO2)]2+ has been characterized in solution.

2011 ◽  
Vol 8 (s1) ◽  
pp. S323-S329
Author(s):  
Shahriare Ghammamy ◽  
Hajar Sahebalzamani

The crystal structure of [(CH3)4N]4[WOCl4F][WO3Cl4] was determined by single crystal x-ray diffraction technique. The crystal is monoclinic, space group C 2/m, with a= 28.23(10) Å, b= 11.60(4) Å,c= 13.48(5) Å, β=118.43(7)°, V= 3886(2)Å3, Z=4. The structure was solved by direct methods and refined by least-squares methods to a final R = 0.0512 for 3825 observed reflections with I>2σ(I). In crystal there are two crystallographic distinct anions, both with cis geometry; the O-W-F and O-W-O angles are 97.5(3)° and 103.1(3) ° respectively. All structures are cis configurations that confirm a preference for angles below 90° and 180° between cis and trans σ-donor ligands, respectively.


2019 ◽  
Vol 74 (4) ◽  
pp. 381-387
Author(s):  
Michael Zoller ◽  
Jörn Bruns ◽  
Gunter Heymann ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractA potassium tetranitratopalladate(II) with the composition K2[Pd(NO3)4] · 2HNO3 was synthesized by a simple solvothermal process in a glass ampoule. The new compound crystallizes in the monoclinic space group P21/c (no. 14) with the lattice parameters a = 1017.15(4), b = 892.94(3), c = 880.55(3) Å, and β = 98.13(1)° (Z = 2). The crystal structure of K2[Pd(NO3)4] · 2HNO3 reveals isolated complex [Pd(NO3)4]2− anions, which are surrounded by eight potassium cations and four HNO3 molecules. The complex anions and the cations are associated in layers which are separated by HNO3 molecules. K2[Pd(NO3)4] · 2HNO3 can thus be regarded as a HNO3 intercalation variant of β-K2[Pd(NO3)4]. The characterization is based on single-crystal X-ray and powder X-ray diffraction.


2011 ◽  
Vol 322 ◽  
pp. 369-372
Author(s):  
Zhi Xiang Ji

A chain Ni (II) coordination polymer material was prepared and characterized by elemental analysis and single-crystal X-ray diffraction. It crystallizes in monoclinic, space group C2/c with a = 1.24348(13) nm, b = 1.29477(12) nm, c = 1.51480(17) nm and Dc = 1.401 g•cm-3. The results of structural analysis indicated that each Ni (II) ion forms six-coordinated with nitrogen atoms of pyridine and thiocyanate, and the Ni (II) coordination polymer material formed one dimensional chain structure by the interaction of pyridine rings.


2018 ◽  
Vol 73 (5) ◽  
pp. 337-348 ◽  
Author(s):  
Sandra Schönegger ◽  
Klaus Wurst ◽  
Gunter Heymann ◽  
Andreas Schaur ◽  
Andreas Saxer ◽  
...  

AbstractA new tin(II) borate with the composition SnB8O11(OH)4 was synthesized by a simple hydrothermal process. It crystallizes in the centrosymmetric monoclinic space group P21/n (no. 14) with the lattice parameters a=790.1(1), b=1402.2(2), c=994.8(1) pm, and β=90.40(5)° (Z=4). The new compound SnB8O11(OH)4 is isotypic to PbB8O11(OH)4 and isostructural to BaB8O11(OH)4. The borate layers are built up from fundamental building blocks (FBBs) with the composition [B8O11(OH)4]2−. Four of these FBBs form a nine-membered ring wherein the Sn2+ cations are located. These boron-oxygen layers are further connected by O–H···O hydrogen bond interactions. The characterization of SnB8O11(OH)4 is based on single-crystal X-ray diffraction data, vibrational spectroscopy, DFT calculations, and thermoanalytical investigations including high temperature powder XRD.


2018 ◽  
Vol 74 (10) ◽  
pp. 1116-1122
Author(s):  
Pheello I. Nkoe ◽  
Hendrik G. Visser ◽  
Chantel Swart ◽  
Alice Brink ◽  
Marietjie Schutte-Smith

The synthesis and characterization of two dinuclear complexes, namelyfac-hexacarbonyl-1κ3C,2κ3C-(pyridine-1κN)[μ-2,2′-sulfanediyldi(ethanethiolato)-1κ2S1,S3:2κ3S1,S2,S3]dirhenium(I), [Re2(C4H8S3)(C5H5N)(CO)6], (1), and tetraethylammoniumfac-tris(μ-2-methoxybenzenethiolato-κ2S:S)bis[tricarbonylrhenium(I)], (C8H20N)[Re2(C7H7OS)3(CO)6], (2), together with two mononuclear complexes, namely (2,2′-bithiophene-5-carboxylic acid-κ2S,S′)bromidotricarbonylrhenium(I), (3), and bromidotricarbonyl(methyl benzo[b]thiophene-2-carboxylate-κ2O,S)rhenium(I), (4), are reported. Crystals of (1) and (2) were characterized by X-ray diffraction. The crystal structure of (1) revealed two Re—S—Re bridges. The thioether S atom only bonds to one of the ReImetal centres, while the geometry of the second ReImetal centre is completed by a pyridine ligand. The structure of (2) is characterized by three S-atom bridges and an Re...Re nonbonding distance of 3.4879 (5) Å, which is shorter than the distance found for (1) [3.7996 (6)/3.7963 (6) Å], but still clearly a nonbonding distance. Complex (1) is stabilized by six intermolecular hydrogen-bond interactions and an O...O interaction, while (2) is stabilized by two intermolecular hydrogen-bond interactions and two O...π interactions.


1987 ◽  
Vol 65 (12) ◽  
pp. 2830-2833 ◽  
Author(s):  
David M. McKinnon ◽  
Peter D. Clark ◽  
Robert O. Martin ◽  
Louis T. J. Delbaere ◽  
J. Wilson Quail

3,5-Diphenyl-1,2-dithiolium-4-olate (1) reacts with aniline to form 1-phenylimino-2-phenylamino-3-phenylindene (3a). Under suitable conditions, 6-phenylbenzo[b]indeno[1,2-e]-1,2-thiazine is also formed. These structures are confirmed by alternative syntheses. The molecular structure of 3a has been determined by single crystal X-ray diffraction. Compound 3a crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 20.777(3) Å, b = 6.130(3) Å, c = 31.327(3) Å, 3 = 99.59(1)°, and Z = 8. The structure was solved by direct methods and refined by least squares to a final R = 0.055. The molecular structure of 3a shows the three phenyl containing substituents to have the planes of their ring systems tilted between 40° and 60° from the plane of the indene system due to steric repulsions.


1979 ◽  
Vol 57 (2) ◽  
pp. 174-179 ◽  
Author(s):  
A. Wallace Cordes ◽  
Paul F. Schubert ◽  
Richard T. Oakley

The crystal structure of 1,4-diphenyl-2,2′,3,3′,5,5′,6,6′-octamethylcyclo-1,4-diphospha-2,3,5,6-tetrasilahexane, (PhPSi2Me4)2, has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P21/c, with a = 9.866(1), b = 11.921(1), and c = 11.324(2) Å, β = 104.31(1)°, Z = 2, and ρcalcd = 1.15 g/cm3. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.060 and Rw of 0.078, for 1173 reflections with intensities greater than 3σ. The (PhPSi2Me4)2 molecule lies on a crystallographic centre of symmetry, and the six-membered P2Si4 ring has a chair conformation with equatorial phenyl groups. The endocyclic angles at P (104.4(1)°) and Si (104.9(2)°) are intermediate between those found in cyclic hexaphosphine and hexasilane molecules, and the Si—Si and P—Si distances of 2.345(3) and 2.252(4) Å, respectively, correspond to single bond lengths, with no appreciable evidence for secondary pπ → dπ bonding between phosphorus and silicon. The Si—C (1.867(8) Å) and P—C (1.828(7) Å) bond lengths are also normal. The variations in the Si—P—C (101.6(2)°, 108.6(2)°), P—Si—C (range 106.2(3)–120.0(3)°), and Si—Si—C (range 105.8(3)–113.7(3)°) angles indicate that the positions of the exocyclic methyl and phenyl groups are influenced by both intra- and intermolecular steric forces.


Author(s):  
Sandeep Kumar ◽  
Ruchi Khajuria ◽  
Amanpreet Kaur Jassal ◽  
Geeta Hundal ◽  
Maninder S. Hundal ◽  
...  

Donor-stabilized addition complexes of nickel(II) with disubstituted diphenyldithiophosphates, [{(ArO)2PS2}2NiL2] {Ar = 2,4-(CH3)2C6H3[(1), (5)], 2,5-(CH3)2C6H3[(2), (6)], 3,4-(CH3)2C6H3[(3), (7)] and 3,5-(CH3)2C6H3[(4), (8)];L= C5H5N [(1)–(4)] and C7H9N [(5)–(8)]}, were successfully isolated and characterized by elemental analysis, magnetic moment, IR spectroscopy and single-crystal X-ray analysis. Compound (4) crystallizes in the monoclinic space groupP21/nwhereas compounds (7) and (8) crystallize in the triclinic space group P\bar 1. The single-crystal X-ray diffraction analysis of (4), (7) and (8) reveals a six-coordinated octahedral geometry for the NiS4N2chromophore. Two diphenyldithiophosphate ions act as bidentate ligands with their S atoms coordinated to the Ni centre. Each of them forms a four-membered chelate ring in the equatorial plane. The N atoms from two donor ligands are axially coordinated to the Ni atom.


2017 ◽  
Vol 81 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Atali A. Agakhanov ◽  
Leonid A. Pautov ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
Vladimir Yu Karpenko ◽  
...  

AbstractOdigitriaite, a new Cs, Na, Ca borosilicate mineral, was discovered in moraine adjacent to the Darai-Pioz alkaline massif in the upper reaches of the Darai-Pioz river at the intersection of the Turkestansky, Zeravshansky and Alaisky mountain ridges, Tajikistan. It occurs as irregular thin flakes associated with quartz, pectolite, baratovite, fluorite, pekovite, polylithionite, aegirine, leucosphenite, pyrochlore, neptunite, reedmergnerite, mendeleevite-(Ce), zeravshanite and sokolovaite. It is colourless with a white streak, is translucent and has a vitreous lustre; it does not fluoresce under ultraviolet light. Odigitriaite is brittle with an uneven fracture and a Mohs hardness of 5. The calculated density is 2.80(2) g/cm3. The indices of refraction are α = 1.502, β = 1.564, γ = 1.576; 2Vobs = 46(2)°, dispersion is weak r > v, and there is no pleochroism. The chemical composition is as follows (electron microprobe, H2O calculated from structure): SiO2 55.30, Al2O3 0.09, Y2O3 0.44, MnO 0.94, FeO 0.10, PbO 0.21, K2O 0.01 Cs2O 8.36, B2O3 4.75, H2O 0.37, F 1.74, O = F2 –0.74, total 99.43 wt.%. The empirical formula of odigitriaite is Cs0.90Na5.12Ca4.68Mn0.20Y0.06Fe0.02Pb0.01[Si13.92Al0.03B2.06O38]F1.39(OH)0.62. The end-member formula is CsNa5Ca5[Si14B2O38]F2. The strong reflections in the powder X-ray diffraction pattern are: [(d, Å), (I, %), (hkl)]: 5.45 (25) (1 1 3), 4.66 (33) (3 1 1), 4.40 (26) (0 2 2), 4.10 (36) (3 1 3), 3.95 (25) (3̄ 1 3), 2.85 (31) (2 2 2), 2.68 (40) (0 0 6), 3.62 (45) (0 2 4), 3.35 (100) (2̄ 2 4), 3.31 (30) (3̄ 1 5), 3.25 (35) (4 0 4), 3.04 (60) (4̄ 2 2), 2.925 (22) (4̄ 2 3), 1.813 (23) (9 1 0). Odigitriaite is monoclinic, space group C2/c, a = 16.652(5), b = 9.598 (3), c = 22.120(7) Å, β= 92.875(14)°, V = 3530.9(1.9) Å3, Z = 4. The crystal structure of odigitriaite was solved by direct methods and refined to an R1 value of 2.75% based on single-crystal X-ray data. It is a double-layer sheet-borosilicate mineral; Cs and Na are intercalated within the double-layer sheet, and the double layers are linked by interstitial Ca and Na atoms.


2015 ◽  
Vol 70 (10) ◽  
pp. 719-725 ◽  
Author(s):  
Cristian Villa-Pérez ◽  
Isabel C. Ortega ◽  
Angélica M. Payán-Aristizábal ◽  
Gustavo Echeverría ◽  
Gloria C. Valencia-Uribe ◽  
...  

AbstractA new complex of Hg(II) with 6-methoxyquinoline (C10H9NO-6MQ) has been synthesized and characterized. The structure of the complex Hg(6MQ)Cl2 was determined by single crystal X-ray diffraction. It crystallizes in the monoclinic space group P21/c with a = 3.9139(3), b = 26.3400(2), c = 10.9090(9) Å, β = 89.833(6)°, V = 1124.6(1) Å3 and Z = 4 molecules per unit cell. The coordination geometry of the mercury(II) center can be described as a distorted square pyramid formed by one nitrogen atom of the 6MQ and four chlorine atoms. Fourier transform infrared, Raman and UV/Vis spectroscopic studies have been carried out to characterize the compound, using theoretical calculations for the assignment of the experimentally observed bands. The thermal behavior was investigated by thermogravimetric analysis. The quantum yield of singlet molecular oxygen production ΦΔ was measured with steady-state methods in ethanol, using 9,10-dimethylanthracene (DMA) as actinometer and Bengal rose as reference photosensitizer. The resultant singlet molecular oxygen was detected indirectly by photooxidation reactions of DMA. The luminescence properties have also been studied.


Sign in / Sign up

Export Citation Format

Share Document