The Vibrational Spectra of NH4VO3 at Elevated Temperatures and Pressures

1987 ◽  
Vol 42 (7) ◽  
pp. 843-852 ◽  
Author(s):  
A . M. Heyns ◽  
M. W. Venter ◽  
K.-J. Range

Abstract Results obtained from the vibrational spectra of NH4VO3 and its deuterated analogues show that at least two types of hydrogen bond interactions can be identified at am bient conditions. In accordance with the structural data on NH4VO3 (F. C. Hawthorne and C. Calvo, J. Solid State Chem. 22, 157 (1977)) these interactions are assigned to normal, strong hydrogen bonds and weaker bifurcated ones, respectively. The temperature dependence of some of the N -H bands indicates that the normal hydrogen bonds decrease in strength with increasing temperatures, while the bifurcated ones tend to increase in strength. The NH4+ ions do not show fluxional behaviour at ambient conditions and even the bifurcated hydrogen bonds are of the type that is dominated by acceptor strength of the anions and not by a volume effect. The Ram an active NH4+ vibrations are very weak compared to the V - O modes and could not all be observed in the highpressure diamond anvil cell. The temperature dependence of the V - O Ram an active modes suggests that changes in the crystals of NH4VO3 brought about by the application of heat mainly involve the O -V -O angles, while pressure changes are mostly accommodated by changes in the V -O bridging bonds and O -V -O bridging angles.

1986 ◽  
Vol 64 (1) ◽  
pp. 142-147 ◽  
Author(s):  
Suzanne Deguire ◽  
François Brisse ◽  
Jacques Ouellet ◽  
Rodrigue Savoie

A stoichiometric complex of formula (COOH)2•2H2O•18-crown-6 has been obtained from oxalic acid and the macrocyclic polyether 18-crown-6. The crystals of the complex have a monoclinic unit cell and belong to the P21/c space group. The components in the adduct are linked through hydrogen bonds in a polymer-like fashion: -crown–H2O–HOOCCOOH–OH2–crown–, where the oxalic acid molecules are present in two distinct disordered orientations. The infrared and Raman spectra of the complex are also reported and interpreted.


2014 ◽  
Vol 10 ◽  
pp. 2858-2873 ◽  
Author(s):  
Robert Francke

Due to the fact that the major portion of pharmaceuticals and agrochemicals contains heterocyclic units and since the overall number of commercially used heterocyclic compounds is steadily growing, heterocyclic chemistry remains in the focus of the synthetic community. Enormous efforts have been made in the last decades in order to render the production of such compounds more selective and efficient. However, most of the conventional methods for the construction of heterocyclic cores still involve the use of strong acids or bases, the operation at elevated temperatures and/or the use of expensive catalysts and reagents. In this regard, electrosynthesis can provide a milder and more environmentally benign alternative. In fact, numerous examples for the electrochemical construction of heterocycles have been reported in recent years. These cases demonstrate that ring formation can be achieved efficiently under ambient conditions without the use of additional reagents. In order to account for the recent developments in this field, a selection of representative reactions is presented and discussed in this review.


Langmuir ◽  
2018 ◽  
Vol 34 (44) ◽  
pp. 13449-13458 ◽  
Author(s):  
Zhongyang Dai ◽  
Lili Shi ◽  
Linghong Lu ◽  
Yunhao Sun ◽  
Xiaohua Lu

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1922 ◽  
Author(s):  
Lunzhi Li ◽  
Lisheng Zhong ◽  
Kai Zhang ◽  
Jinghui Gao ◽  
Man Xu

There is a long-standing puzzle concerning whether polyethylene blends are a suitable substitution for cable-insulation-used crosslinking polyethylene (XLPE) especially at elevated temperatures. In this paper, we investigate temperature dependence of mechanical, electrical properties of blends with 70 wt % linear low density polyethylene (LLDPE) and 30 wt % high density polyethylene (HDPE) (abbreviated as 70 L-30 H). Our results show that the dielectric loss of 70 L-30 H is about an order of magnitude lower than XLPE, and the AC breakdown strength is 22% higher than XLPE at 90 °C. Moreover, the dynamic mechanical thermal analysis (DMA) measurement and hot set tests suggest that the blends shows optimal mechanical properties especially at high temperature with considerable temperature stability. Further scanning electron microscope (SEM) observation and X-ray diffraction (XRD) analysis uncover the reason for the excellent high temperature performance and temperature stability, which can be ascribed to the uniform fine-spherulite structure in 70 L-30 H blends with high crystallinity sustaining at high temperature. Therefore, our findings may enable the potential application of the blends as cable insulation material with higher thermal-endurance ability.


2021 ◽  
Author(s):  
Luke Sibimol ◽  
Manjunath Chatti ◽  
Asha Yadav ◽  
Brittany Kerr ◽  
Jiban Kangsabanik ◽  
...  

Proton-exchange membrane water electrolysers provide many advantages for the energy-efficient production of H<sub>2</sub>, but the current technology relies on high loadings of expensive iridium at the anodes, which are often unstable in operation. To address this, the present work scrutinises the properties of antimony-metal (Co, Mn, Ni, Fe, Ru) oxides synthesised as flat thin films by a solution-based method for the oxygen evolution reaction in 0.5 M H<sub>2</sub>SO<sub>4</sub>. Among the non-noble-metal catalysts, only cobalt-antimony and manganese-antimony oxides demonstrate high stability and reasonable activity under ambient conditions, but slowly lose activity at elevated temperatures. The ruthenium-antimony system is highly active, requiring an overpotential of 0.39 ± 0.03 and 0.34 ± 0.01 V to achieve 10 mA cm<sup>-2</sup> at 24 ± 2 and 80 °C, respectively, and remaining remarkably stable during one-week tests at 80 °C. The <i>S</i>-number for this catalyst is higher than that for the high-performance benchmark Ir-based systems. Density functional theory analysis and physical characterisation reveal that this high stability is supported by the enhanced hybridisation of the oxygen p- and metal d-orbitals induced by antimony, and can arise from two distinct structural scenarios: either formation of an antimonate phase, or nanoscale intermixing of metal and antimony oxide crystallites.


2014 ◽  
Vol 70 (10) ◽  
pp. o1106-o1106
Author(s):  
Yong-Le Zhang ◽  
Chuang Zhang ◽  
Wei Guo ◽  
Jing Wang

In the title compound, C9H9N3OS, the plane of the benzene ring forms a dihedral angle of 33.40 (5)° with that of the triazole group. In the crystal, molecules are linked by O—H...N hydrogen bonds involving the phenol –OH group and one of the unsubstituted N atoms of the triazole ring, resulting in chains along [010]. These chains are further extended into a layer parallel to (001) by weak C—H...N hydrogen-bond interactions. Aromatic π–π stacking [centroid–centroid separation = 3.556 (1) Å] between the triazole rings links the layers into a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document