Palladium-Cadmium Ordering In Repdcd (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb) And Comparison With Isotypic Indium Compounds

2002 ◽  
Vol 57 (3) ◽  
pp. 275-279 ◽  
Author(s):  
Thomas Fickenscher ◽  
Rolf-Dieter Hoffmann ◽  
Ratikanta Mishra ◽  
Rainer Pöttgen

AbstractTernary intermetallic compoundsREPdCd (RE=La, Ce, Pr, Nd, Sm, Eu, Tb)were synthesized by reaction of the elements in sealed tantalum tubes in a high-frequency furnace. All compounds were investigated by X-ray diffraction on powders. Those with RE = La, Ce, Pr, Nd, Sm, and Tb contain trivalent rare earth metals and they crystallize with the hexagonal ZrNiAl type structure. NdPdCd [a = 764.8(3), c = 401.3(2) pm] and TbPdCd [a = 756.5(2), c = 389.0(1) pm] are reported here for the first time as well as EuPdCd. The compounds with La, Ce, Pr, and Sm [J. Alloys Compd. 182, 87 (1992)] are confirmed. The crystal structure of EuPdCd was refined from X-ray single crystal diffractometer data: TiNiSi type, Pnma, a = 745.9(3), b = 439.8(2), c = 863.7(3) pm, wR2 = 0.0405, 683 F2 values, and 20 variable parameters. The three-dimensional [PdCd] substructure consists of strongly puckered, orthorhombically distorted Pd3Cd3 hexagons with Pd-Cd distances ranging from 283 to 285 pm. The europium atoms fill the cavities within the [PdCd] network. Chemical bonding in the series REPdCd and REPdIn is compared.

2000 ◽  
Vol 55 (9) ◽  
pp. 834-840 ◽  
Author(s):  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen ◽  
Vasyl’ I. Zaremba ◽  
Yaroslav M. Kalychak

New intermetallic indium compounds EuAuIn2, EuPdIn4, GdRhIn2, YbRhln4, and YbPdIn4 were obtained by reaction of the elements. GdRhIn2 was synthesized in an arc-melting furnace, while EuAuIn2, EuPdln4, YbRhIn4, and YbPdIn4 were prepared in sealed tantalum tubes in a high-frequency furnace. The five compounds were investigated by X-ray diffraction both on powders and single crystals. EuAuIn2 and GdRhIn2 adopt the MgCuAl2 type structure with space group Cmcm. Single crystal X-ray data yielded a = 468.1(2), b = 1105.5(4), c = 753.5(4) pm, wR2 = 0.096, 343 F2 values for EuAuIn2 and a = 435.0(1), b = 1013.3(3), c = 783.6(2) pm, wR2 = 0.042, 608 F2 values for GdRhIn2 with 16 variables for each refinement. The two structures may be described as gold or rhodium filled versions of the host lattices Euln2 and GdIn2 . The three-dimensional indium networks of EuAuIn2 and GdRhIn2 resemble the lonsdaleite structure. Both structures are built up from three-dimensional [Auln2] and [Rhln2] poly anions in which the europium and gadolinium atoms occupy distorted hexagonal tubes. The modulations of the In-In distances within the indium networks are compared with other MgCuAl2 type indides. EuPdIn4 and YbPdIn4 crystallize with the YNiAl4 type, space group Cmcm: a = 454.8(2), b = 1703.2(8), c = 738.0(3) pm, wR2 = 0.044, 501 F2 values for EuPdIn4 and a = 445.8(2), b = 1666.0(4), c = 747.3(2) pm, wR2 = 0.050, 711 F2 values for YbPdIn4 with 24 variables for each refinement. In contrast, YbRhln4 adopts the LaCoAl4 type, space group Pmma: a = 863.7(2), b = 422.5(1), c = 743.1(1) pm, wR2 = 0.051, 467 F2 values and 24 variables. EuPdIn4, YbPdlIn4, and YbRhIn4 too consist of three-dimensional [Pdln4] and [Rhln4] polyanions in which the europium and ytterbium atoms are located in distorted hexagonal and pentagonal channels. Common structural motifs of these indides are distorted bcc-like indium cubes which are compared with the structures of Y2CoIn8, YCoIn5, EuRh2ln8, and elemental indium. Chemical bonding in these indides is briefly discussed


2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


2011 ◽  
Vol 66 (7) ◽  
pp. 671-676 ◽  
Author(s):  
Trinath Mishra ◽  
Rainer Pöttgen

The equiatomic rare earth compounds REPtZn (RE = Y, Pr, Nd, Gd-Tm) were synthesized from the elements in sealed tantalum tubes by high-frequency melting at 1500 K followed by annealing at 1120 K and quenching. The samples were characterized by powder X-ray diffraction. The structures of four crystals were refined from single-crystal diffractometer data: TiNiSi type, Pnma, a = 707.1(1), b = 430.0(1), c = 812.4(1) pm, wR2 = 0.066, 602 F2, 21 variables for PrPt1.056Zn0.944; a = 695.2(1), b = 419.9(1), c = 804.8(1) pm, wR2 = 0.041, 522 F2, 21 variables for GdPt0.941Zn1.059; a = 688.2(1), b = 408.1(1), c = 812.5(1) pm, wR2 = 0.041, 497 F2, 22 variables for HoPt1.055Zn0.945; a = 686.9(1), b = 407.8(1), c = 810.4(1) pm, wR2 = 0.061, 779 F2, 20 variables for ErPtZn. The single-crystal data indicate small homogeneity ranges REPt1±xZn1±x. The platinum and zinc atoms build up three-dimensional [PtZn] networks (265 - 269 pm Pt-Zn in ErPtZn) in which the erbium atoms fill cages with coordination number 16 (6 Pt + 6 Zn + 4 Er). Bonding of the erbium atoms to the [PtZn] network proceeds via shorter RE-Pt distances, i. e. 288 - 293 pm in ErPtZn.


2011 ◽  
Vol 75 (6) ◽  
pp. 2823-2832
Author(s):  
P. Elliott ◽  
A. Pring

AbstractThe crystal structure of the manganese phosphate mineral gatehouseite, ideally Mn52+(PO4)2(OH)4, space group P212121, a = 17.9733(18), b = 5.6916(11), c = 9.130(4) Å, V= 933.9(4) Å3, Z = 4, has been solved by direct methods and refined from single-crystal X-ray diffraction data (T = 293 K) to an R index of 3.76%. Gatehouseite is isostructural with arsenoclasite and with synthetic Mn52+(PO4)2(OH)4. The structure contains five octahedrally coordinated Mn sites, occupied by Mn plus very minor Mg with observed <Mn—O> distances from 2.163 to 2.239 Å. Two tetrahedrally coordinated P sites, occupied by P, Si and As, have <P—O> distances of 1.559 and 1.558 Å. The structure comprises two types of building unit. A strip of edge-sharing Mn(O,OH)6 octahedra, alternately one and two octahedra wide, extends along [010]. Chains of edge- and corner-shared Mn(O,OH)6 octahedra coupled by PO4 tetrahedra extend along [010]. By sharing octahedron and tetrahedron corners, these two units form a dense three-dimensional framework, which is further strengthened by weak hydrogen bonding. Chemical analyses by electron microprobe gave a unit formula of (Mn4.99Mg0.02)Σ5.01(P1.76Si0.07(As0.07)Σ2.03O8(OH)3.97.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


2019 ◽  
Vol 234 (9) ◽  
pp. 613-621
Author(s):  
Marc André Althoff ◽  
Jörn Frederik Martens ◽  
Marco Reichel ◽  
Manfred Metzulat ◽  
Thomas Matthias Klapötke ◽  
...  

Abstract The molecular and single crystal structure of O,O-diethyl O-[2-(dimethylamino)ethyl] phosphorothioate oxalate, as determined by single crystal X-ray diffraction studies, is described for the first time; although this compound is well-known by industry and research from the mid-20th century. The known decomposition product of pure O,O-diethyl O-[2-(dimethylamino)ethyl] phosphorothioate could also be structurally characterized. Additionally, the compounds are characterized by recent analytical methods e.g. NMR. The findings of our study support the thesis that the isolated decomposition product must be a by-product of the thiono-thiolo rearrangement process of the title compound.


Author(s):  
P. Bayliss ◽  
N. C. Stephenson

SummaryThe crystal structure of gersdorffite (III) has been examined with three-dimensional Weissenberg X-ray diffraction data. The unit cell is isometric with a 5·6849 ± 0·0003 Å, space group PI, and four formula units per cell. This structure has the sulphur and arsenic atoms equally distributed over the non-metal atom sites of pyrite. All atoms show significant random displacements from the ideal pyrite positions to produce triclinic symmetry, which serves to distinguish this mineral from a disordered cubic gersdorffite (II) and a partially ordered cubic gersdorffite (I). Factors responsible for the atomic distortions are discussed.


2012 ◽  
Vol 67 (3) ◽  
pp. 269-271
Author(s):  
Sadiqa Firdous ◽  
Nida Hassan Ansari ◽  
Seik Weng Ngb ◽  
Sammer Yousuf ◽  
Abdul Malik

A novel furo-furan lactone 1 has been isolated as fine needles from the ethyl acetate-soluble fraction of Heliotropium eichwaldi. This is the first report of any furo-furan from the genus Heliotropium. β -Sitosterol 3-O-β -D-glucoside 2 has also been obtained for the first time from this source. The structure of 1 was elucidated by X-ray diffraction studies.


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.


2019 ◽  
Vol 75 (5) ◽  
pp. 504-507 ◽  
Author(s):  
Hui-Ru Chen

Excellent fluorescence properties are exhibited by d 10 metal compounds. The novel three-dimensional ZnII coordination framework, poly[[{μ2-bis[4-(2-methyl-1H-imidazol-1-yl)phenyl] ether-κ2 N 3:N 3′}(μ2-furan-2,5-dicarboxylato-κ2 O 2:O 5)zinc(II)] 1.76-hydrate], {[Zn(C6H2O5)(C20H18N4O)]·1.76H2O} n , has been prepared and characterized using IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The crystal structure analysis revealed that the compound exhibits a novel fourfold interpenetrating diamond-like network. This polymer also displays a strong fluorescence emission in the solid state at room temperature.


Sign in / Sign up

Export Citation Format

Share Document