scholarly journals Facile synthesis of new pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones via the tandem intramolecular Pinner–Dimroth rearrangement and their antibacterial evaluation

2019 ◽  
Vol 74 (2) ◽  
pp. 175-181
Author(s):  
Nadieh Dorostkar-Ahmadi ◽  
Abolghasem Davoodnia ◽  
Niloofar Tavakoli-Hoseini ◽  
Hossein Behmadi ◽  
Mahboobeh Nakhaei-Moghaddam

AbstractSome new 7-alkyl-4,6-dihydropyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones were prepared through heterocyclization of 6-amino-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles with aliphatic carboxylic acids in the presence of phosphoryl chloride under reflux in high yields. The suggested mechanism involves a tandem intramolecular Pinner–Dimroth rearrangement. The products were characterized on the basis of FT-IR, 1H NMR, and 13C NMR spectral and microanalytical data and evaluated for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) using the disk diffusion method.

2018 ◽  
Vol 24 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Nasrin Karimi ◽  
Abolghasem Davoodnia ◽  
Mehdi Pordel

Abstract The reaction of 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles with excess aliphatic carboxylic acids in the presence of phosphoryl chloride (POCl3) afforded new 2-alkyl-5-aryl-8,8-dimethyl-8,9-dihydro-3H-chromeno[2,3-d]pyrimidine-4,6(5H,7H)-diones in high yields. The suggested mechanism involves a tandem intramolecular Pinner/Dimroth rearrangement. The synthesized compounds were characterized by infrared (IR), proton nuclear magnetic resonance (1H NMR), carbon-13 nuclear magnetic resonance (13C NMR) and elemental analysis.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Kobra Nikoofar ◽  
Fatemeh Shahriyari

AbstractA simple, straightforward, and ultrasound-promoted method for the preparation of some highly functionalized tetrahydropyridines reported via pseudo five-component reaction of (hetero)aromatic aldehydes, different anilines, and alkyl acetoacetates in the presence of [N-CH2CO2H-3-pic]+HSO4−, as a novel ionic liquid, in green aqueous medium. The IL was synthesized utilizing simple and easily-handled substrates and characterized by FT-IR, 1H NMR, 13C NMR, GC-MASS, FESEM, EDX, and TGA/DTG techniques. The procedure contains some highlighted aspects which are: (a) performing the MCR in the presence of aqua and sonic waves, as two main important and environmentally benign indexes in green and economic chemistry, (b) high yields of products within short reaction times, (c) convenient work-up procedure, (d) preparing the new IL via simple substrates and procedure.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Ibrahim Al- Adham ◽  
Najah Al-muhtaseb

<p><strong>Objective: </strong>To design and synthesize amino acetylenic and thiocarbonate of 2-mercapto-1,3-benthiazoles as potential antimicrobial agents.</p><p><strong>Methods: </strong>A new series of 2-{[4-(t-amino-1-yl) but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole derivatives (AZ1-AZ6), and S-1,3-benzothiazol-2-yl-O-alkyl carbonothioate derivatives were synthesised, with the aim that the target compounds show new and potential antimicrobial activity. The elemental analysis was indicated by the EuroEA elemental analyzer, and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC were determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer using DMSO-d<sub>6</sub> as a solvent.<em> </em><em>In vitro </em>antimicrobial activity, evaluation was done for the synthesised compounds, by agar diffusion method and broth dilution test. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. <em></em></p><p><strong>Results: </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. Compound of 2-{[4-(4-methylpiperazin-1-yl)but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole (AZ1), 2-{[4-(2-methylpiperidin-1-yl)but-2-yn-1-yl]sulfanyl}-1,3-benzothiazole (AZ2), 2-{[4-(piperidin-1-yl) but-2-yn-1-yl]sulfanyl}-1, 3-benzothiazole (AZ6), S-1,3-benzothiazol-2-yl-O-ethyl carbonothioate (AZ7), and S-1,3-benzothiazol-2-yl-O-(2-methylpropyl) carbonothioate (AZ9) showed the highest antimicrobial activity against <em>Pseudomonas aeruginosa </em>(<em>P. aeruginosa</em>), AZ-9 demonstrated the highest antifungal activity against <em>Candida albicans </em>(<em>C. albicans</em>), with MIC of 31.25 µg/ml.</p><p><strong>Conclusion: </strong>These promising results promoted our interest to investigate other structural analogues for their antimicrobial activity further.</p>


2012 ◽  
Vol 9 (3) ◽  
pp. 1613-1622 ◽  
Author(s):  
Farouq E. Hawaiz ◽  
Mohammad K. Samad

A number of 3-[4-(benzyloxy)-3-(2-Chlorophenylazo)-phenyl]-5-(substituted-phenyl)-1-substituted-2-pyrazolines( 4a-j) and (5a-j) have been synthesized by diazotization of 2-chloroaniline and its coupling reaction with 4-hydroxy acetophenone, followed by benzyloxation of the hydroxyl group to give the substrate [4-benzyloxy-3-(2-chlorophenylazo)-acetophenone (1)].The prepared starting material (1) has been reacted with different substituted benzaldehydes to give a new series of chalcone derivatives 1-[(4-benzyloxy)-3-(2-chloro-phenylazo)-phenyl]-3-(substituted phenyl)-2-propen-1-one (3a-j), in high yields and in a few minutes, and the later compounds were treated with hydrazine hydrate according to Michael addition reaction to afford a new biolological active target compounds (4a-j) and (5a-j). Furthermore, The structures of the newly synthesized compounds were confirmed by FT-IR,13C-NMR,13C-DEPT &1H-NMR spectral data. The chalcone and pyrazoline derivatives were evaluated for their anti bacterial activity againstEscherichia colias gram negative andStaphylococcus aureusas gram positive, the results showed significant activity against both types of bacteria.


2019 ◽  
Vol 948 ◽  
pp. 127-132
Author(s):  
Murdiah ◽  
Deni Pranowo ◽  
Tri Joko Raharjo

Synthesis of zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) has been done. The first step was to synthesize the compound (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-on) through a cross aldol condensation reaction between vanilin:acetone mol ratio of 1:5:5, for 5 hours in high yields (97%). The second step was the selective hydrogenation of (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-on) with NiCl2•6H2O-NaBH4 catalyst in mild condition. Based on the FT-IR, 13C-NMR and 1H-NMR and GC-MS analyses, the synthesis of zingerone has been successfully synthesized by selective hydrogenation reaction with 80% yield.


2009 ◽  
Vol 74 (5) ◽  
pp. 537-548 ◽  
Author(s):  
Aydin Tavman ◽  
Serkan Ikiz ◽  
Funda Bagcigil ◽  
Yakut Özgür ◽  
A.K. Seyyal

2-Methoxy-6-(5-H/methyl/chloro/nitro-1H-benzimidazol-2-yl)phenols (HLx; x = 1-4, respectively) ligands and HL1 complexes with Fe(NO3)3, Cu(NO3)2, AgNO3 and Zn(NO3)2 were synthesized and characterized. The structures of the compounds were confirmed based on elemental analysis, molar conductivity, magnetic moment, FT-IR, 1H- and 13C-NMR. The antibacterial activity and minimum inhibitory concentration (MIC) of the free ligands, their hydrochloride salts and the complexes were evaluated using the disk diffusion method in dimethyl sulfoxide (DMSO) and the dilution method, respectively, against 9 bacteria. HL1 and HL3, as well as the Cu(II) and Zn(II) complexes, showed antibacterial activity against Gram-positive bacteria.


2021 ◽  
Vol 27 (1) ◽  
pp. 90-99
Author(s):  
Naser Sadeghpour Orang ◽  
Hadi Soltani ◽  
Mehdi Ghiamirad ◽  
Mehdi Ahmadi Sabegh

Abstract A new series of benzo[5,6]chromeno[3,2-c]quinoline derivatives were successfully synthesized using various arylglyoxal monohydrates, quinoline-2,4-dione, and β-naphthol in H2O:EtOH (2:1) as a green solvent in the presence of catalytic amounts p-toluenesulfonic acid as a mild catalyst under reflux conditions with high yields (83–92%). The reaction conditions were optimized in different solvents at variable thermal conditions, and the optimized reaction condition for this synthesis has been reported. The structures of all new products were defined by 1H-NMR, 13C-NMR, FT-IR, mass spectral data, and HRMS.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Awaz Jamil Hussein ◽  
Hashim Jalal Azeez

A number of derivatives of 2-(substituted phenyl)-3-(4-(6-methylbenzo[d]thiazol-2-yl)phenyl) thiazolidin-4-one (3a–j) have been synthesized from the reaction of 4-(6-methylbenzo[d]thiazol-2-yl)benzenamine(1), with different substituted benzaldehydes (2a–j), followed by cyclocondensation reaction of the prepared imines with 2-meraptoacetic acid in high yields. Furthermore, the structures of the newly synthesized compounds were confirmed by FT-IR,13C-NMR,13C-DEPT, and1H-NMR spectral data. The imines and thiazolidin-4-one derivatives were evaluated for their antibacterial activity againstEscherichia colias gram negative andStaphylococcus aureusas gram positive, the results have shown significant activity against both types of bacteria.


2018 ◽  
Vol 24 (6) ◽  
pp. 297-302 ◽  
Author(s):  
Jabbar Khalafy ◽  
Nasser Etivand ◽  
Neda Khalillou

Abstract An improved synthesis of 2-ethyl-5-(2-hydroxy-4-oxoquinolin-3(4H)-ylidene)-6-aryl-5,6-dihydroimidazo[2,1-b][1,3,4]thiadiazol-7-ium hydroxide derivatives 4a–k via the reaction of aryl glyoxal monohydrates 1a–k, quinoline-2,4-diol 2 and 2-amino-[1,3,4]thiadiazole (3) in the presence of Et3N/sulfamic acid in H2O is described. This green protocol is characterized by the use of the readily available catalyst and reactants, short reaction times, operational simplicity and high yields of products. The structures of all compounds were characterized by 1H NMR, 13C NMR and Fourier-transform infrared (FT-IR) spectral data and microanalyses.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Yahia Nasser Mabkhot ◽  
Fahad D. Aldawsari ◽  
S. S. Al-Showiman ◽  
Assem Barakat ◽  
M. Iqbal Choudhary ◽  
...  

Synthesis of 1,1′-(3,4-diphenylthieno[2,3-b]thiophene-2,5-diyl)diethanone (4) is reported here. The structure of compound4was deduced by1H-NMR,13C-NMR, FT-IR, MS, microanalysis, and single-crystal X-ray diffraction. Compound crystallizes in the monoclinic space groupP21/nwitha= 9.3126(7) Å,b= 9.5867(7) Å,c= 20.2811(15) Å,α= 90°,β= 95.436(2)°,γ= 90°,V= 1802.5(2) Å3, andZ= 4. The molecules are packed in crystal structure by weak intermolecular C10–H10A⋯ S1 hydrogen bonding interactions. Compound4can be a useful intermediate for the synthesis of diphenylthieno[2,3-b]thiophene. Compound4was found to be active against Gram-positive bacteria (Bacillus subtilisandStaphylococcus pneumoniae) and Gram-negative bacteria (Escherichia coli) and also was found to be active against fungi (Aspergillus fumigatusandCandida albicans).


Sign in / Sign up

Export Citation Format

Share Document