Compounds of the types Pn(pyS)3 (Pn = P, As, Bi; pyS: pyridine-2-thiolate) and Sb(pyS) x Ph3–x (x = 3–1); molecular structures and electronic situations of the Pn atoms

2021 ◽  
Vol 76 (2) ◽  
pp. 103-118
Author(s):  
Erik Wächtler ◽  
Robert Gericke ◽  
Theresa Block ◽  
Birgit Gerke ◽  
Rainer Pöttgen ◽  
...  

Abstract The compounds Pn(pyS)3 (Pn = P, As, Sb, Bi) were synthesized from the respective chloride (Pn = P, As, Sb) or nitrate (Bi), pyridine-2-thiol (pySH) and triethylamine (NEt3) as a supporting base in THF (P, Sb), CHCl3 (As) or methanol (Bi). Sb(pyS)3 was also obtained from the reaction of SbCl3 with LipyS (prepared in situ) in methanol. The compounds Sb(pyS)2Ph and Sb(pyS)Ph2 were prepared in a one-pot reaction starting from SbCl3 and SbPh3 (1:1 ratio). Upon Cl/pyS substitution, the resulting reaction mixture allows for a facile separation of the products in hot hexane. P(pyS)3 and As(pyS)3 crystallize isostructurally to the reported structure of Sb(pyS)3 with κ-S-bound pyS ligands. These crystal structures feature close Pn···Pn contacts which are most pronounced for the arsenic derivative. Bi(pyS)3 adopts a different molecular structure in the solid state, which features two chelating (κ 2-S,N-pyS) ligands and a κ-S-bound ligand. The presence of N→Bi interactions between the nitrogen atom of the κ-S-pyS ligand and the Bi atom of another molecule renders this structure a polymer chain along the crystallographic b axis with Bi⋅⋅⋅Bi van-der-Waals contacts. The structures of this set of Pn(pyS)3 compounds were also studied in solution using 1H NMR spectroscopy, revealing equivalent pyS ligands in discrete Pn(pyS)3 molecules. The molecular structure of Sb(pyS)Ph2 was optimized by quantum chemical methods, and a comparison with the structures reported for the other Sb/pyS/Ph combinations reveals Sb(pyS)2Ph to feature the strongest Sb···N interactions with the κ-S-pyS ligand. The results of 1H NMR spectroscopic investigations of the compounds Sb(pyS) x Ph3–x (x = 3–0) suggest the Ph protons in ortho position to be incorporated into intramolecular C–H···S contacts for x = 2 and 1. Natural localized molecular orbital (NLMO) calculations were employed in order to gain insights into the electronic situations of the Pn atoms and Pn–R bonds (R = S, C), especially for the effects caused by formal substitution of Pn in the compounds Pn(pyS)3 and the ligand patterns in the compounds Sb(pyS) x Ph3–x (x = 3–0). For the latter series of compounds, the electronic situation of the Sb atom was further studied by 121Sb Mössbauer spectroscopy, providing a correlation between the calculated electron density at Sb [ρ(0)] and the experimentally observed isomer shift δ. The missing link between group 15 and group 13 metal compounds of the type M(pyS)3, compound Al(pyS)3, was synthesized in this work. In the solid state (confirmed crystallographically), the mer isomer of this tris-chelate complex with distorted octahedral Al coordination sphere was found. This coordination mode was confirmed for the solution state (CDCl3) by 1H and 13C NMR spectroscopy at T = −40 °C.

2015 ◽  
Vol 44 (19) ◽  
pp. 8889-8905 ◽  
Author(s):  
K. Ritter ◽  
C. Pehlken ◽  
D. Sorsche ◽  
S. Rau

A high dimerization constant of a ruthenium complex is observed with the aid of 1H-NMR spectroscopy. The solid state molecular structure indicates that multiple π-interactions are the reason for strong dimerization.


2016 ◽  
Vol 45 (9) ◽  
pp. 3974-3982 ◽  
Author(s):  
Riccardo Pettinari ◽  
Fabio Marchetti ◽  
Claudio Pettinari ◽  
Francesca Condello ◽  
Brian W. Skelton ◽  
...  

Mono- and tetranuclear Ru(ii) half-sandwich complexes containing acylpyrazolone ligands. 13C and 15N solid state NMR spectroscopy.


2020 ◽  
Vol 73 (8) ◽  
pp. 794
Author(s):  
Aliyu M. Ja'o ◽  
Derek A. Wann ◽  
Conor D. Rankine ◽  
Matthew I. J. Polson ◽  
Sarah L. Masters

The molecular structure of morpholine borane complex has been studied in the solid state and gas phase using single-crystal X-ray diffraction, gas electron diffraction, and computational methods. Despite both the solid-state and gas-phase structures adopting the same conformation, a definite decrease in the B–N bond length of the solid-state structure was observed. Other structural variations in the different phases are presented and discussed. To explore the hydrogen storage potential of morpholine borane, the potential energy surface for the uncatalyzed and BH3-catalyzed pathways, as well as the thermochemistry for the hydrogen release reaction, were investigated using accurate quantum chemical methods. It was observed that both the catalyzed and uncatalyzed dehydrogenation pathways are favourable, with a barrier lower than the B–N bond dissociation energy, thus indicating a strong propensity for the complex to release a hydrogen molecule rather than dissociate along the B–N bond axis. A minimal energy requirement for the dehydrogenation reaction has been shown. The reaction is close to thermoneutral as demonstrated by the calculated dehydrogenation reaction energies, thus implying that this complex could demonstrate potential for future on-board hydrogen generation.


2021 ◽  
Vol 83 (6) ◽  
pp. 49-54
Author(s):  
B.P. Matselyukh ◽  

The aim of this work was the isolation, purification and some properties investigation of two regulators of antibiotic biosynthesis of streptomycetes. Methods includes extraction of regulators from agar cultures and their concentration by vacuum rotary evaporator, thin layer chromatography and spectrophotometry. Results. Two strains of streptomycetes AN26 and B35 isolated from soils of different regions of Ukraine produce the regulators restoring the landomycin E biosynthesis and sporulation in mutant strain Streptomyces globispoprus 1912-B2. Both regulators were purified by thin layer chromatography and have the same Rf 0.69. Absorption curves of regulators were established by means of spectrophotometry. Maxima of absorption of regulators were 232.5 nm. The next study of the isolated regulators by means of NMR will give the possibility to elucidate their molecular structures. Conclusions. It is shown that two strains of streptomycetes isolated from the soils of Askania Nova and Brovary produce transcriptional regulators such as signaling molecules, which, like A-factor, restore the biosynthesis of antibiotics landomycin E and streptomycin in test strains S. globisporus 1912-B2 and S. griseis 1439, respectively. In terms of absorption maxima, they are similar and differ from similar indicators of known regulators of streptomycetes. It is possible that these compounds belong to new, not yet described signaling molecules, and the answer to this question will give future studies of their molecular structure by NMR spectroscopy.


2011 ◽  
Vol 89 (7) ◽  
pp. 854-862
Author(s):  
Glenn A. Facey ◽  
Ilia Korobkov

The tri-ortho-thymotide (TOT) clathrates of dibromo- and dichloromethane were characterized by single crystal X-ray diffraction at 200 K and solid-state 2H NMR spectroscopy as a function of temperature. The host structure was found to be typical of other cage-type TOT clathrates. The X-ray results showed a substantial amount of disorder among the guest molecules. In both clathrates, multiple guest molecule positions could be modeled. The heavy atoms of all the guest molecule positions lie approximately in the same plane, with some out-of-plane distortion. The guest molecules were of two different types in positions symmetric about the crystallographic twofold rotation axis: type A guests, with carbon atoms well removed from the crystallographic twofold axis, and type B guests, with carbon atoms very close to the twofold axis. The 2H NMR spectra for the guests confirmed that the disorder was dynamic. The experimental results could be accounted for by the presence of three simultaneous types of molecular motion, all fast with respect to the 2H quadrupolar interaction: (i) twofold molecular flips about the molecular C2 symmetry axis, (ii) exchange between the type A and type B sites in a single plane, and (iii) a two-site libration of the plane containing the heavy atoms of the A and B guest sites with a temperature-dependent amplitude.


Author(s):  
Rosa María Claramunt ◽  
María Dolores Santa María ◽  
Isabelle Forfar ◽  
Francisco Aguilar-Parrilla ◽  
María Minguet-Bonvehí ◽  
...  

1982 ◽  
Vol 37 (11) ◽  
pp. 1461-1471 ◽  
Author(s):  
Reinhold Tacke ◽  
Haryanto Linoh ◽  
Moayad T. Attar-Bashi ◽  
William S. Sheldrick ◽  
Ludger Ernst ◽  
...  

The potentially curare-like silicon compounds 8a-8f wore synthesized and investigated with respect to their structure-activity relationships. The conformations of the com­pounds in the solid state and in solution were studied by X-ray diffraction analysis (8a-8e) and 1H NMR spectroscopy (8a-8f), respectively. The muscle relaxing properties of 8a-8f were investigated on the mouse. The observed structure-activity relationships are not in accordance with the classical “14 Å model” for neuromuscular blocking agents.


2019 ◽  
Vol 264 ◽  
pp. 01005
Author(s):  
Masahiro Inagaki ◽  
Koshiro Mizobe ◽  
Katsuyuki Kida ◽  
Yuji Kashima

In this study, rolling contact fatigue (RCF) tests were performed in order to investigate the effect of groove radius on the life of PEEK-PTFE hybrid radial bearings. Furthermore, solid state NMR spectroscopy was performed in order to investigate the molecular structure of PEEK. It was found that groove radius shape was related to limitations of the bearings, and the molecular structure of the PEEK was not changed by the temperature rise in this test. Furthermore, thermal failure of the PEEK was not affected by oxidation during RCF test.


2014 ◽  
Vol 70 (3) ◽  
pp. 312-314 ◽  
Author(s):  
Igor V. Kazakov ◽  
Michael Bodensteiner ◽  
Alexey Y. Timoshkin

The molecular structures of trichlorido(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIIIatom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′-terpyridine donor as well.


Sign in / Sign up

Export Citation Format

Share Document