Proposal for the Mechanism of Action of Urocanase. Inference from the Inhibition by 2-Methylurocanate

1987 ◽  
Vol 42 (4) ◽  
pp. 349-352 ◽  
Author(s):  
Erich Gerlinger ◽  
János Rétey

Incubation of urocanase with 2-methylurocanate leads, after an initial normal reaction, to a time dependent inactivation of the enzyme. It is suggested that a tautomeric form (1) of the product, 2-methyl-imidazolone propionate, is the actual inhibitor. On the basis of these and of published experimental data a novel mechanism is proposed for the urocanase reaction. The crucial and initial step is the electrophilic addition of enzyme-bound NAD to the 2-position of the imidazole nucleus of urocanate.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


2006 ◽  
Vol 129 (1) ◽  
pp. 211-215 ◽  
Author(s):  
John D. Fishburn

Within the current design codes for boilers, piping, and pressure vessels, there are many different equations for the thickness of a cylindrical section under internal pressure. A reassessment of these various formulations, using the original data, is described together with more recent developments in the state of the art. A single formula, which can be demonstrated to retain the same design margin in both the time-dependent and time-independent regimes, is shown to give the best correlation with the experimental data and is proposed for consideration for inclusion in the design codes.


2007 ◽  
Vol 21 (19) ◽  
pp. 1239-1252 ◽  
Author(s):  
XIAO-FENG PANG ◽  
BO DENG ◽  
HUAI-WU ZHANG ◽  
YUAN-PING FENG

The temperature-dependence of proton electric conductivity in hydrogen-bonded molecular systems with damping effect was studied. The time-dependent velocity of proton and its mobility are determined from the Hamiltonian of a model system. The calculated mobility of (3.57–3.76) × 10-6 m 2/ Vs for uniform ice is in agreement with the experimental value of (1 - 10) × 10-2 m 2/ Vs . When the temperature and damping effects of the medium are considered, the mobility is found to depend on the temperature for various electric field values in the system, i.e. the mobility increases initially and reaches a maximum at about 191 K, but decreases subsequently to a minimum at approximately 241 K, and increases again in the range of 150–270 K. This behavior agrees with experimental data of ice.


KnE Energy ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Yu Penionzhkevich ◽  
Yu Sobolev ◽  
V Samarin ◽  
M Naumenko

The paper presents the results of measurement of the total cross sections for reactions 4,6He + Si and 6,7,9Li + Si in the beam energy range 5−50 A⋅MeV. The enhancements of the total cross sections for reaction 6He + Si compared with reaction 4He + Si, and 9Li + Si compared with reactions 6,7Li + Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He + Si and 9Li + Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.


2007 ◽  
Vol 20 (12) ◽  
pp. 1778-1786 ◽  
Author(s):  
Josh T. Pearson ◽  
Jan L. Wahlstrom ◽  
Leslie J. Dickmann ◽  
Santosh Kumar ◽  
James R. Halpert ◽  
...  

1938 ◽  
Vol 34 (1) ◽  
pp. 104-105
Author(s):  
L. A. Yurieva

At the meeting of the Council of the Kazan Medical Institute on 30 / XII 1937, LS Persianinov defended his dissertation for the degree of candidate of medical sciences. sciences. Dissertation topic: "Streptocide action in clinic and experiment". The dissertation was completed at the departments of microbiology and obstetric-gynecological Kazan. state Institute for Advanced Training of Physicians. V.I. Lenin. The dissertation candidate reviewed the literature of Russian and foreign sources, presented the clinical and experimental data obtained by various authors (Ulesko-Stroganova, Lebedeva, etc.), gave different views on the mechanism of action of streptocide: through the reticulo-endoelial system or due to the direct bactericidal property of the streptocide itself. The author's own research consists of an experimental and a clinical part.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Kin M. Li ◽  
Mihir Sen ◽  
Arturo Pacheco-Vega

In this paper, we present a system identification (SI) procedure that enables building linear time-dependent fractional-order differential equation (FDE) models able to accurately describe time-dependent behavior of complex systems. The parameters in the models are the order of the equation, the coefficients in it, and, when necessary, the initial conditions. The Caputo definition of the fractional derivative, and the Mittag-Leffler function, is used to obtain the corresponding solutions. Since the set of parameters for the model and its initial conditions are nonunique, and there are small but significant differences in the predictions from the possible models thus obtained, the SI operation is carried out via global regression of an error-cost function by a simulated annealing optimization algorithm. The SI approach is assessed by considering previously published experimental data from a shell-and-tube heat exchanger and a recently constructed multiroom building test bed. The results show that the proposed model is reliable within the interpolation domain but cannot be used with confidence for predictions outside this region. However, the proposed system identification methodology is robust and can be used to derive accurate and compact models from experimental data. In addition, given a functional form of a fractional-order differential equation model, as new data become available, the SI technique can be used to expand the region of reliability of the resulting model.


2014 ◽  
Vol 626 ◽  
pp. 365-371 ◽  
Author(s):  
Kohei Oide ◽  
Tetsuya Matsuda

In this study, macro/meso/micro elastic-viscoplastic analysis of plain-woven laminates is conducted based on a homogenization theory for nonlinear time-dependent composites. For this, a plain-woven laminate is modeled with respect to three scales by considering the laminate as a macrostructure, fiber bundles (yarns) and a matrix in the laminate as a mesostructure, and fibers and a matrix in the yarns as a microstructure. Then, an elastic-viscoplastic constitutive equation of the laminate is derived by dually applying the homogenization theory for nonlinear time-dependent composites to not only the meso/micro but also the macro/meso scales. Using the present method, the elastic-viscoplastic analysis of a plain-woven glass fiber/epoxy laminate subjected to on-and off-axis loading is performed. It is shown that the present method successfully takes into account the effects of viscoplasticity of the epoxy in yarns on the elastic-viscoplastic behavior of the plain-woven GFRP laminate. It is also shown that the results of analysis are in good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document