A Herbicide Resistant Euglena Mutant Carrying a Ser to Thr Substitution at Position 265 in the D1 Protein of Photosystem II

1992 ◽  
Vol 47 (3-4) ◽  
pp. 245-248 ◽  
Author(s):  
A. Aiach ◽  
E. Ohmann ◽  
U. Bodner ◽  
U. Johanningmeier

A herbicide resistant Euglena mutant (MSI) has been obtained by adapting wild type cells to increasing concentrations of DCMU (3-(3′,4′-dichlorophenyl)-1,1-dimethylurea). Lower resistance levels towards DCMU and metribuzin were observed in MSI when compared with Euglena or Chlamydomonas mutants with Ser 264 to Ala substitutions. RNA-sequence analysis identified a Ser to Thr change at position 265 (equivalent to position 264 in other organisms), thus making it possible to compare the influence of amino acids Ser, Ala and Thr at identical positions on the inhibitory effect of structurally different herbicides in the same species.

1990 ◽  
Vol 45 (5) ◽  
pp. 418-422 ◽  
Author(s):  
Dirk Naber ◽  
Udo Johanningmeier ◽  
Jack J. S. van Rensen

Abstract Single amino acid substitutions in the D1 protein of photosystem II may cause resistance to various herbicides. In all organisms studied these substitutions are located in or between helices IV and V of the protein. The increasing number of herbicide-resistant organisms necessitates development of a rapid methodology to characterize deviations from the wildtype se­ quence. Here, two procedures are described to identify mutations in the psbA gene, which is coding for D1. These procedures involve the isolation and amplification of DNA and R A and subsequent sequencing reactions without the need to clone the psbA gene. A triazine-resistant and a -susceptible biotype of Chenopodium album were used as model species. An A to G transition, giving rise to a serine to glycine mutation at position 264 in the D1 protein, is found in the resistant plant.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1501
Author(s):  
Beatrice Battaglino ◽  
Alessandro Grinzato ◽  
Cristina Pagliano

Photosystem II (PSII) is a multi-subunit enzymatic complex embedded in the thylakoid membranes responsible for the primary photosynthetic reactions vital for plants. Many herbicides used for weed control inhibit PSII by interfering with the photosynthetic electron transport at the level of the D1 protein, through competition with the native plastoquinone for the QB site. Molecular details of the interaction of these herbicides in the D1 QB site remain to be elucidated in plants. Here, we investigated the inhibitory effect on plant PSII of the PSII-inhibiting herbicides diuron, metobromuron, bentazon, terbuthylazine and metribuzin. We combined analysis of OJIP chlorophyll fluorescence kinetics and PSII activity assays performed on thylakoid membranes isolated from pea plants with molecular docking using the high-resolution PSII structure recently solved from the same plant. Both approaches showed for terbuthylazine, metribuzin and diuron the highest affinity for the D1 QB site, with the latter two molecules forming hydrogen bonds with His215. Conversely, they revealed for bentazon the lowest PSII inhibitory effect accompanied by a general lack of specificity for the QB site and for metobromuron an intermediate behavior. These results represent valuable information for future design of more selective herbicides with enhanced QB binding affinities to be effective in reduced amounts.


Author(s):  
V. B. Dolgo-Saburov ◽  
N. I. Chalisova ◽  
L. V. Lyanginen ◽  
E. S. Zalomaeva

In an organotypic culture, an investigation was conducted into combined effects of cyclophosphamide DNA as synthesis inhibitor used to model a resorptive action of mustard gas, and cortexin polypeptide or each of 20 encoded amino acids on the development of cell proliferation in cerebral cortex explants of the rat. The combined administration of cyclophosphamide together with cortexin or with each of the 20 encoded amino acids, except glycine, showed suppression of the cytostatic agent inhibitory effect. Thus, cortexin and amino acids have a protective effect on cell proliferation in the tissue culture of the central nervous system under the action of mustardlike substances.


Author(s):  
N. I. Chalisova ◽  
V. K. Kozlov ◽  
A. B. Mulik ◽  
E. P. Zatsepin ◽  
T. A. Kostrova

An urgent problem is the search for substances that can provide a protective effect in cases of DNA synthesis and repair disorders that arise as a result of side effects of cytostatic drugs used in the treatment of cancer. The aim of this work was to study the effect of 20 encoded amino acids in the presence of Cyclophosphane on the development of organotypic culture of rat liver tissue. The results obtained indicate that Cyclophosphane; which simulates the action of such cytostatic substances; inhibits cell proliferation in the liver tissue. It was also found that the encoded amino acids: asparagine; arginine; and glutamic acid; eliminate the inhibitory effect of Cyclophosphane in liver tissue culture. The growth zone of explants after combined exposure to Cyclophosphane (whose isolated action suppressed the growth zone) and these amino acids increased significantly and reached control values. Thus; the experimental data create the basis for the development of methods for the therapeutic use of the three studied amino acids for the removal of side effects in the treatment with cytostatic drugs.


Sign in / Sign up

Export Citation Format

Share Document