scholarly journals Scent gland constituents of the Middle American burrowing python, Loxocemus bicolor (Serpentes: Loxocemidae)

2017 ◽  
Vol 72 (7-8) ◽  
pp. 265-275 ◽  
Author(s):  
Thies Schulze ◽  
Paul J. Weldon ◽  
Stefan Schulz

Abstract:Analysis by gas chromatography/mass spectrometry of the scent gland secretions of male and female Middle American burrowing pythons (Loxocemus bicolor) revealed the presence of over 300 components including cholesterol, fatty acids, glyceryl monoalkyl ethers, and alcohols. The fatty acids, over 100 of which were identified, constitute most of the compounds in the secretions and show the greatest structural diversity. They include saturated and unsaturated, unbranched and mono-, di-, and trimethyl-branched compounds ranging in carbon-chain length from 13 to 24. The glyceryl monoethers possess saturated or unsaturated, straight or methyl-branched alkyl chains ranging in carbon-chain length from 13 to 24. Alcohols, which have not previously been reported from the scent glands, possess straight, chiefly saturated carbon chains ranging in length from 13 to 24. Sex or individual differences in secretion composition were not observed. Compounds in the scent gland secretions ofL. bicolormay deter offending arthropods, such as ants.

1996 ◽  
Vol 1996 ◽  
pp. 98-98
Author(s):  
B M L McLean ◽  
R W Mayes ◽  
F D DeB Hovell

Alkanes occur naturally in all plants, although forage crops tend to have higher alkane contents than cereals. N-alkanes have odd-numbered carbon chains. They are ideal for use as markers in feed trials, because, they are inert, indigestible and naturally occurring, and can be recovered in animal faeces. Synthetic alkanes (even-numbered carbon chains) are available commercially and can also used as external markers. Dove and Mayes (1991) cite evidence indicating that faecal recovery of alkanes in ruminants increases with increasing carbon-chain length. Thus the alkane “pairs” (e.g. C35 & C36, and C32 & C33) are used in calculating intake and digestibility because they are long chain and adjacent to each other. However, recent work by Cuddeford and Mayes (unpublished) has found that in horses the faecal recovery rates are similar regardless of chain lengths.


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Mohd Basyaruddin Abdul Rahman ◽  
Siti Salhah Othman ◽  
Noor Mona Md Yunus

The enzymatic selectivity of Lipase from Candida rugosa immobilized onto a calcined layered double hydroxide (CLDHs-CRL) towards the chain-length of fatty acids and alcohols in the synthesis of fatty acid esters was investigated.  The results showed that CMAN-CRL catalyzed the esterification process with fatty acids of medium chain lengths (C10-C14) effectively while, CNAN-CRL and CZAN-CRL exhibited high percentage conversion in fatty acids with carbon chain lengths of C8-C12 and C10-C18, respectively. In the alcohol selectivity study, CMAN-CRL showed high selectivity toward alcohols with carbon chain lengths of C4, C6 and C10.  On the other hand, both CNAN-CRL and CZAN-CRL exhibited rather low selectivity towards longer carbon chain length of alcohols. 


2009 ◽  
Vol 48 (24) ◽  
pp. 10816-10819 ◽  
Author(s):  
Kalaru Srilatha ◽  
N. Lingaiah ◽  
Potharaju S. Sai Prasad ◽  
B. L. A. Prabhavathi Devi ◽  
R. B. N. Prasad ◽  
...  

ChemMedChem ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 247-255
Author(s):  
Michael Murray ◽  
Ariane Roseblade ◽  
Yongjuan Chen ◽  
Kirsi Bourget ◽  
Tristan Rawling

2000 ◽  
Vol 124 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Naomi Kudo ◽  
Naoki Bandai ◽  
Erika Suzuki ◽  
Masanori Katakura ◽  
Yoichi Kawashima

1995 ◽  
Vol 311 (2) ◽  
pp. 689-697 ◽  
Author(s):  
S J Hardy ◽  
B S Robinson ◽  
A Ferrante ◽  
C S T Hii ◽  
D W Johnson ◽  
...  

Fatty acids with more than 22 carbon atoms (very-long-chain fatty acids; VLCFAs) are normal cellular components that have been implicated in the pathophysiology of a number of peroxisomal disorders. To date, however, essentially nothing is known regarding their biological activities. Ca2+ mobilization is an important intracellular signalling system for a variety of agonists and cell types. Given that several polyunsaturated long-chain fatty acids mobilize intracellular Ca2+ and that we have postulated that the VLCFAs may be involved in signal transduction, we examined whether the tetraenoic VLCFA induced Ca2+ mobilization in human neutrophils. We report that fatty acid-induced intracellular Ca2+ mobilization declined for fatty acid species of more than 20 carbon atoms, but increased again as the carbon chain length approached 30. This Ca2+ mobilization occurred independently of inositol 1,4,5-triphosphate production and protein kinase C translocation and involved both the release of Ca2+ from the intracellular stores and changes to the influx or efflux of the ion. We further observed that triacontatetraenoic acid [30:4(n-6)] mobilized Ca2+ from a thapsigargin-insensitive intracellular pool distinct from the thapsigargin-sensitive pools affected by arachidonic acid [20:4(n - 6)] or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). 20:4 (n - 6) induced strong superoxide production (chemiluminescence) which was inhibited by thapsigargin pretreatment. In contrast, fatty acid-induced superoxide production progressively declined as the carbon chain length increased beyond 20-22 carbon atoms. Further studies suggested that the thapsigargin-insensitive Ca2+ mobilization elicited by 30:4 (n - 6) was not related to oxyradical formation, while the thapsigargin-sensitive Ca2+ mobilization induced by 20:4 (n - 6) may be involved in the initiation but not necessarily the maintenance of superoxide production. In conclusion, this is the first report to demonstrate a biological activity for the VLCFA and indicates that 30:4 (n - 6) influences second messenger systems in intact cells that differ from those affected by long-chain fatty acids such as 20:4 (n - 6).


1968 ◽  
Vol 51 (7) ◽  
pp. 1094-1097 ◽  
Author(s):  
S. Yamdagni ◽  
L.H. Schultz ◽  
H.D. Radloff

Sign in / Sign up

Export Citation Format

Share Document