Composition of the essential oils of three Malaysian Xylopia species (Annonaceae)

2020 ◽  
Vol 75 (11-12) ◽  
pp. 479-484
Author(s):  
Natasa Mohd Shakri ◽  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Shamsul Khamis ◽  
Nor Azah Mohamad Ali ◽  
Muhammad Helmi Nadri

AbstractThe rich and diversified Malaysian flora represents an excellent resource of new chemical structures with biological activities. The genus Xylopia L. includes aromatic plants that have both nutritional and medicinal uses. This study aims to contribute with information about the volatile components of three Xylopia species essential oils: Xylopia frutescens, Xylopia ferruginea, and Xylopia magna. In this study, essential oils were extracted from the leaves by a hydrodistillation process. The identification of the essential oil components was performed by gas chromatography (GC-FID) and gas chromatography–coupled mass spectrometry (GC-MS). The major components of the essential oils from X. frutescens were bicyclogermacrene (22.8%), germacrene D (14.2%), elemol (12.8%), and guaiol (12.8%), whereas components of the essential oils from X. magna were germacrene D (35.9%), bicyclogermacrene (22.8%), and spathulenol (11.1%). The X. ferruginea oil was dominated by bicyclogermacrene (23.6%), elemol (13.7%), guaiol (13.4%), and germacrene D (12.3%).

2020 ◽  
Vol 42 ◽  
pp. e51639
Author(s):  
Beatriz Eugenia Jaramillo-Colorado ◽  
Flor María Palacio-Herrera ◽  
Edisson Duarte-Restrepo

 The objectives of this work were the study of the volatile chemical composition of essential oils (EO’s) from Swinglea glutinosa, as well as to evaluate their antioxidant, repellent and fumigant properties. The EO was obtained by hydrodistillation from the peel of the fruit, gathered in the city of Cartagena, Bolívar (Colombia). The volatile composition was analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The major compounds found in S. glutinosa were germacrene D (4.8%), limonene (5.2%), a-terpineol (6.5%), b-pinene (8.5%), nerolidyl acetate (9.8%), and trans-nerolidol (34.6%). S. glutinosa showed antioxidant potential (85.8%) (IC50=142.49 µg mL-1). The EO deployed repellent activity against the Tribolium castaneum weevil at a concentration of 15.73 nL cm-1 at 2 hours of exposure (72%), while the result for the commercial repellent was 50% at the same concentration. EO from S. glutinosa displayed the best fumigant activity with LC50 of 153.4 μg mL-1 air. The essential oil from S. glutinosa can be considerated as a natural source of biocides and antioxidants.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kamel Msaada ◽  
Nidhal Salem ◽  
Olfa Bachrouch ◽  
Slim Bousselmi ◽  
Sonia Tammar ◽  
...  

The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability ofA. absinthiumL. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID) and by gas chromatography mass spectrometry (GC/MS). In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL). Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant.A. absinthiumL. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities.


2018 ◽  
Vol 46 (2) ◽  
pp. 517-524
Author(s):  
Kandhan KARTHISHWARAN ◽  
Subban KAMALRAJ ◽  
Chelliah JAYABASKARAN ◽  
Shyam S. KURUP ◽  
Sabitha SAKKIR ◽  
...  

Aerva javanica (Burm. f) Juss. ex Schult. (Family: Amaranthaceae) family is one of the traditional medicinal plant growing in the United Arab Emirates. Apart from studies related to some medicinal properties, phytochemical, GC MS compound characterization and biological activities still to be investigated. An experiment was conducted to determine the possible bioactive components with their chemical structures and elucidation of phytochemicals from the aerial parts of the plant. The macro and micro-mineral constituents and antioxidant activities were also evaluated. Aerial parts of A. javanica were extracted sequentially with hexane, chloroform, ethyl acetate, acetone, methanol by cold percolation method. Free radical scavenging and antioxidant properties of methanolic extract were evaluated by using in vitro antioxidant assays such as hydroxyl radical scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide radical scavenging activity and ABTS radical scavenging activity. Primary phytochemical and micro-macro element was tested using standard protocol. The chemical characterization was done with the help of Gas Chromatography-Mass Spectrometry (GC–MS), and the mass spectra of the total compounds in the extract were matched with the National Institute of Standard and Technology (NIST) library. Mineral constituents were identified and estimated by ICP-OES. Ninety-nine metabolites were obtained by GC-MS anslysis; indole was found to be major components followed by 2-Chlorallyl diethyldithiocarbamate (CDEC), Carbaril, Bis(2-ethylhexyl) phthalate, Quinoline, 4H-Cyclopenta[def]phenanthrene,2-[Bis(2-chloroethylamino)]-tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide, Phenobarbital, 1H-Indole, 2-methyl-, 2,3,7,8-Tetrachlorodibenzo-p-dioxin Disulfide, diphenyl. The presence of various bioactive compounds in the extract validates the traditional medicinal uses of this plant.


2016 ◽  
Vol 11 (12) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Noura S. Dosoky ◽  
Prabodh Satyal ◽  
Suraj Pokharel ◽  
William N. Setzer

Rhododendron anthopogon D. Don., a small compact Himalayan shrub growing in Nepal, is a known medicinal plant used to treat sore throat, colds, blood disorders, bone disease, potato allergies, and vomiting, and to relieve liver disorders, headaches and back pain. The present study investigated the chemical composition and bioactivities of the leaf essential oil from R. anthopogon from Dhankuta, Nepal. The essential oil from leaves was obtained by hydrodistillation and a detailed chemical analysis was conducted by gas chromatography – mass spectrometry (GC-MS). The enantiomeric distribution of monoterpenoid components was determined using chiral gas chromatography and represents the first chiral examination of R. anthopogon essential oil. The essential oil was screened for antimicrobial activity using the microbroth dilution test, and for cytotoxic activity against MCF-7, MDA-MB-231, and 5637 using the MTT assay. A total of 70 volatile components were identified from the essential oil. The major components were α-pinene (21.5%), δ-cadinene (13.8%), β-pinene (9.5%), limonene (5.9%), δ-amorphene (4.6%), α-muurolene (4.5%), and ( E)-caryophyllene (3.2%) with other minor constituents (< 3%). The essential oil showed marginal antibacterial and cytotoxic activities, but no antifungal effects.


2006 ◽  
Vol 1 (7) ◽  
pp. 1934578X0600100 ◽  
Author(s):  
William N. Setzer

The essential oils of the barks of Croton monteverdensis Huft and C. niveus Jacq. (Euphorbiaceae) from Monteverde, Costa Rica, were isolated by hydrodistillation in yields of 0.03% and 0.10%, respectively. The chemical composition of the oils was determined by GC–MS. The most abundant essential oil components of C. monteverdensis were α-pinene (17.1%), β-pinene (10.5%), and linalool (8.3%), while C. niveus bark oil was made up largely of α-pinene (14.4%), 1,8-cineole (11.6%), and borneol (8.5%). The major components account for the fragrances and are consistent with the traditional medicinal uses of these plants.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Ismail Amri ◽  
Hamrouni Lamia ◽  
Samia Gargouri ◽  
Mohsen Hanana ◽  
Mariem Mahfoudhi ◽  
...  

Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly α-pinene (35.2%) and β-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.


2010 ◽  
Vol 5 (3) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Koji Noge ◽  
Nobuhiro Shimizu ◽  
Judith X. Becerra

The leaf volatile components of Mexican Bursera linanoe were identified as ( R)-(–)-linalyl acetate (57.6%; 95.5% ee) and ( S)-(–)-germacrene D (39.3%; 100% ee) by solvent extraction and GC–MS and chiral GC analyses. Linalool was previously reported as the major component from the leaves of B. linanoe. However, we believe that this is a decomposition product of linalyl acetate during steam distillation, a common method for extraction of essential oils. The chemically unique blend in the leaves of B. linanoe may act as a chemical barrier against its potential herbivores, Blepharida beetles that have a tendency for attacking chemically similar plants as hosts.


2012 ◽  
Vol 7 (12) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Isiaka A. Ogunwande ◽  
Razaq Jimoh ◽  
Adedoyin A. Ajetunmobi ◽  
Nudewhenu O. Avoseh ◽  
Guido Flamini

Essential oils obtained by hydrodistillation of leaves of two Nigerian species were analyzed for their constituents by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The leaf oil of Ficus benjamina L. (Moraceae), collected during the day, contained high contents of α-pinene (13.9%), abietadiene (9.7%), cis-α-bisabolene (8.2%) and germacrene-D-4-ol (8.4%), while the night sample was dominated by germacrene-D-4-ol (31.5%), 1,10-di- epi-cubenol (8.8%) and hexahydrofarnesylacetone (8.3%). This could be a possible indication of differences in emissions of volatiles by F. benjamina during the day and night. The main compounds of Irvingia barteri Hook. f. (Irvingiaceae) were β-caryophyllene (17.0%), (E)-α-ionone (10.0%), geranial (7.6%), (E)-β-ionone (6.6%) and β-gurjunene (5.1%).


2012 ◽  
Vol 7 (1) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Vahid Rowshan ◽  
Ahmad Hatami ◽  
Atefeh Bahmanzadegan ◽  
Mahnaz Yazdani

The essential oils from aerial parts and fruits of Anisosciadium orientale DC. growing wild in Iran were obtained by hydrodistillation and analyzed by GC and GC/MS. Seventy-one compounds were identified in the fruit oil and fifteen in the oil from the aerial parts. The main oil components of the fruits and aerial parts were myristicin (33.5%-33.7%), α-terpinolene (22%-25.8%) and limonene (19.5%-19.7%). Some compounds, such as geranyl butyrate and germacrene-D, were only detected in the fruit oil.


2017 ◽  
Vol 72 (11-12) ◽  
pp. 483-489 ◽  
Author(s):  
Gulden Dogan ◽  
Nazan Kara ◽  
Eyup Bagci ◽  
Seher Gur

AbstractThe chemical composition of the essential oils from the leaves and fruit ofEucalyptus camaldulensisgrown in Mersin, Turkey was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The biological activities (antibacterial and antifungal) were examined using the agar well diffusion method. The main leaf oil constituents werep-cymene (42.1%), eucalyptol (1,8-cineole) (14.1%), α-pinene (12.7%) and α-terpinol (10.7%). The main constituents of the fruit oil were eucalyptol (1,8-cineole) (34.5%),p-cymene (30.0%), α-terpinol (15.1%) and α-pinene (9.0%). Our results showed that both types of oils are rich in terms of monoterpene hydrocarbons and oxygenated monoterpenes. The leaf and fruit essential oils ofE. camaldulensissignificantly inhibited the growth of Gram-positive (Staphylococcus aureusandBacillus subtilis) and Gram-negative (Escherichia coliandStreptococcussp.) bacteria (p<0.05). The oils also showed fungicidal activity againstCandida tropicalisandC. globrata. Leaf essential oils showed more activity than fruit essential oils, probably due to the higher p-cymene concentration in leaves.


Sign in / Sign up

Export Citation Format

Share Document