Receptor-mediated biological effects of extracts obtained from three Asplenium species

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Venelin H. Petkov ◽  
Raina G. Ardasheva ◽  
Natalia A. Prissadova ◽  
Athanas D. Kristev ◽  
Plamen S. Stoyanov ◽  
...  

Abstract This study reports the effects of aqueous extracts obtained from three fern species of Bulgarian origin: Asplenium ceterach L., Asplenium scolopendrium L., and Asplenium trichomanes L. on the contractility and bioelectrogenesis of rat gastric smooth muscle tissues. In the concentration range 0.015–0.150 mg/mL the three extracts contracted smooth muscle tissues in a concentration-dependent manner. The contractions caused by A. ceterach L. and A. scolopendrium L. extracts (0.150 mg/mL) were reduced by ketanserin (5 × 10−7 and 5 × 10−6 mol/L), an antagonist of serotonin 5-HT2 receptor. The contraction evoked by A. trichomanes L. (0.150 mg/mL) was significantly reduced by 1 × 10−6 mol/L atropine, an antagonist of muscarinic receptors, and turned into relaxation against the background of 3 × 10−7 mol/L galantamine. After combined pretreatment with galantamine and l-arginine (5 × 10−4 mol/L), this relaxation become more pronounced. The study demonstrates that constituents of A. ceterach L. and A. scolopendrium L. extracts act as agonists of 5-HT2 receptors and cause contraction by activating serotonergic signaling system. A. trichomanes L.-induced reaction is an additive result of two opposite-in-character effects. The dominant contraction is initiated by inhibition of acetylcholinesterase activity. The relaxation develops with pre-inhibited acetylcholinesterase, it is significantly potentiated by l-arginine, and therefore associated with nitrergic signaling pathway.

2015 ◽  
Vol 10 (4) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Natalia Prissadova ◽  
Petko Bozov ◽  
Kiril Marinkov ◽  
Hristo Badakov ◽  
Atanas Kristev

Ursolic acid (UA) in concentrations of 1×10−7 mol/L - 5×10−5 mol/L induced relaxation in gastric smooth muscle (SM) tissues, in a concentration-dependent manner. The relaxation did not change membrane potential and slow wave contraction patterns. A significant decrease in amplitude and frequency of spike-potentials was observed. UA-induced reactivity was removed when SM preparations were treated with nifedipine (1×10−6 mol/L). Ca2+- induced contractions of the depolarized SM preparations (42 mmol/L K+; Ca2+- free Krebs solution) were substantially reduced in the presence of UA. It was determined that, in certain concentrations, UA influenced L – type Ca2+ channels, and reduced the Ca2+ influx.


1989 ◽  
Vol 256 (6) ◽  
pp. G1005-G1010
Author(s):  
R. K. Pearson ◽  
E. M. Hadac ◽  
L. J. Miller

Human gastric smooth muscle tumors (leiomyosarcomas) have been shown to express cholecystokinin (CCK) binding sites that are functionally similar to physiologically important receptors present on their cells of origin. In this work, we have applied affinity-labeling techniques using 125I-D-Tyr-Gly-[Nle28,31]CCK-(26-33) to attempt to define the ligand-binding subunit of this receptor, and we have used the receptor antagonist L364,718 and deglycosylating enzymes to compare this molecule with well-defined CCK receptors on the classical peripheral targets (pancreas and gallbladder) of this hormone. To validate the use of 125I-D-Tyr-Gly-[Nle28,31]CCK-(26-33) for this tissue, we demonstrated that it bound to leiomyosarcoma membranes in a rapid, reversible, saturable, specific, and high-affinity manner (Kd = 0.8 nM). Although previous affinity labeling of this tissue with a CCK-33-based probe identified multiple bands, only one of those candidate proteins was predominantly labeled in the present work (Mr 100,000) by using a probe that is cross-linked through a site in greater proximity to the receptor-binding domain. Labeling was inhibited in a concentration-dependent manner by CCK-8 but not by structurally unrelated ligands. Although endo-beta-N-acetyl-glucosaminidase F digestion shifted this band by Mr 5,000, demonstrating that it was a glycoprotein, the deglycosylation product was very different from other CCK receptors studied. Also, unlike pancreatic and gallbladder CCK receptors, affinity labeling of this receptor was not affected by L364,718. These observations confirm that the gastric smooth muscle tumor CCK receptor represents a receptor subtype that is distinct from other peripheral CCK receptors, biochemically as well as functionally.


1984 ◽  
Vol 247 (4) ◽  
pp. G402-G410
Author(s):  
L. J. Miller

Gastric smooth muscle cells are a physiological target for the polypeptide hormone cholecystokinin (CCK). Human tumors arising from this type of cell, leiomyosarcomas, can retain their ability to express a receptor for CCK. To begin to characterize the human CCK receptor, we established a scheme for fractionation of these tumors to yield a membrane preparation enriched in enzyme markers of plasmalemma that saturably binds CCK. In competition-binding studies using 125I-CCK-8, only peptides structurally related to CCK competed for binding, with 50% of binding inhibited by 0.075 nM CCK-8, 0.9 nM CCK-8-desulfate, 0.9 nM gastrin-17, and 2.5 nM CCK tetrapeptide. Specificity of binding was demonstrated by showing that structurally unrelated peptides did not compete for binding. Association and dissociation of binding were temperature dependent. We have also performed affinity labeling studies to define the molecular properties of the CCK binding site. In these, the membranes were incubated with 125I-CCK-33, washed, cross-linked with disuccinimidyl suberate, solubilized, and electrophoretically separated on a polyacrylamide gel. Autoradiography of the dried gel revealed labeling of a major component with Mr 75,000 and minor components with Mr 53,000, Mr 100,000, Mr 120,000, and Mr greater than 200,000. Labeling was inhibited by CCK-8 in a concentration-dependent manner. This was also specific for CCK and structurally related peptides. These results demonstrate that gastric leiomyosarcomas are a very good source of a human CCK receptor and suggest that they may provide an easily cultured tissue with which this receptor can be fully characterized.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2003 ◽  
Vol 99 (3) ◽  
pp. 646-651 ◽  
Author(s):  
Jingui Yu ◽  
Koji Ogawa ◽  
Yasuyuki Tokinaga ◽  
Yoshio Hatano

Background The Rho/Rho-kinase signaling pathway plays an important role in mediating Ca2+ sensitization of vascular smooth muscle. The effect of anesthetics on Rho/Rho-kinase-mediated vasoconstriction has not been determined to date. This study is designed to examine the possible inhibitory effects of sevoflurane on the Rho/Rho-kinase pathway by measuring guanosine 5'-[gamma-thio]triphosphate (GTP gamma S)-stimulated contraction and translocation of RhoA (one of the three Rho subtypes) and Rock-2 (one of the two Rho-kinase subtypes) from the cytosol to the membrane in rat aortic smooth muscle. Methods GTP gamma S-induced contraction of rat aortic endothelium-denuded rings was measured using an isometric force transducer, and GTP gamma S-stimulated membrane translocation of RhoA and Rock-2 in smooth muscle cells was detected with Western blotting in the presence and absence of sevoflurane. Results GTP gamma S (10(-4) m) induced a sustained contraction, which was significantly inhibited by the Rho-kinase inhibitor, Y27632 (3 x 10(-6) m). Before treatment with GTP gamma S, RhoA and Rock-2 were detected primarily in the cytosolic fraction. GTP gamma S (10(-4) m) stimulated the translocation of RhoA and Rock-2 from the cytosol to the membrane, which was sustained for more than 60 min. Sevoflurane (1.7, 3.4, and 5.1%) concentration dependently inhibited the GTP gamma S-induced constriction of rat aortic smooth muscle with a reduction of constriction of 52-75% (P < 0.01, n = 8), and attenuated the translocation of RhoA and Rock-2 by 31-66% and 34-78%, respectively (P < 0.05-0.01, respectively; n = 4). Conclusion The current findings show that sevoflurane depresses the GTP gamma S-stimulated contraction and translocation of both Rho and Rho-kinase from the cytosol in a concentration-dependent manner, indicating that sevoflurane is able to inhibit vasoconstriction mediated by the Rho/Rho-kinase pathway in rat aortic smooth muscle.


1989 ◽  
Vol 257 (4) ◽  
pp. C607-C611 ◽  
Author(s):  
A. Wallnofer ◽  
C. Cauvin ◽  
T. W. Lategan ◽  
U. T. Ruegg

ATP stimulated 45Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating 45Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce 45Ca2+ influx. Stimulation of 45Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced 45Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, and Mg2+) were able to inhibit both agonist- and depolarization-induced 45Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated 45Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.


1984 ◽  
Vol 57 (1) ◽  
pp. 129-134 ◽  
Author(s):  
E. H. Walters ◽  
P. M. O'Byrne ◽  
L. M. Fabbri ◽  
P. D. Graf ◽  
M. J. Holtzman ◽  
...  

Contractile responses of canine tracheal smooth muscle to electrical field stimulation diminished over a 2-h period of incubation. However, addition of indomethacin (10(-5) M) for a similar time not only prevented this inhibition of contractile response, but actually markedly increased the response to electrical field stimulation, suggesting that prostaglandins were responsible for the time-dependent inhibition. Measured prostaglandin E2 increased in the tissue bath over 2 h in control tissues. Addition of prostaglandin E2 to the tissue produced similar inhibition of contractile responses to electrical field stimulation in a concentration-dependent manner. In contrast, incubation alone, treatment with indomethacin, or addition of prostaglandin E2 had little, if any, effect on contractions induced by acetylcholine. We conclude that the release of prostaglandins from canine tracheal smooth muscle that occurs with time has a predominantly inhibitory effect on cholinergic neurotransmission at a prejunctional site.


1995 ◽  
Vol 268 (1) ◽  
pp. L47-L55 ◽  
Author(s):  
A. P. Abela ◽  
E. E. Daniel

In canine bronchi bathed in 10(-6) M indomethacin (IDM), prostaglandin (PG) E2 inhibited electrical field stimulation (EFS)- and acetylcholine (ACh)-mediated contractions and excitatory junction potentials (EJP) in a concentration-dependent manner without altering the resting membrane potential. EFS-induced EJPs were abolished at 10(-7) M PGE2, which shifted responses to ACh 10-fold rightward. Thus PGE2 predominantly inhibited the release of ACh and secondarily decreased smooth muscle response to ACh. U-46619, an analogue of thromboxane A2 (TxA2), initiated tetrodotoxin- and atropine-insensitive contractions in a concentration-dependent manner. U-46619 (10(-9) M) did not alter significantly EFS- or ACh-stimulated contractions and potentiated EFS amplitude of EJPs without depolarizing muscle cells. Either prejunctional activation of ACh release by TxA2 or postjunctional potentiation of the response to ACh can explain these findings. U-46619 (<or = 10(-8) M) depolarized the membrane potential, initiating oscillations accompanied by a large contraction. Addition of 10(-8) M nitrendipine, but not tetraethylammonium (25 mM), blocked the oscillations selectively. Other prostanoids (PGD2, PGI2, and PGF2 alpha) had no significant effects on canine bronchi. In the absence of IDM, PGE2 accumulated, EFS contractions decreased with time, and EJPs disappeared. We conclude that in canine bronchi PGE2 predominantly inhibits ACh release and endogenous PGE2 acts similarly, whereas TxA2 excites, probably at postjunctional sites.


1986 ◽  
Vol 251 (5) ◽  
pp. G678-G681 ◽  
Author(s):  
A. Kuwahara ◽  
K. Ozawa ◽  
N. Yanaihara

The present experiments examined the local effects of cholecystokinin-octapeptide (CCK-8) and related peptides on gastric motility of anesthetized dogs. Peptides were injected through the gastroepiploic artery at doses of 1.0, 2.5, 5.0, 10.0, and 20.0 ng/ml. CCK-8 and its analogues (Glt-CCK-8, pGlu-CCK-8, and Suc1-MePhe8-CCK-7) increased gastric smooth muscle contraction in a dose-dependent manner. ED50 of CCK-8 was 2.97 +/- 0.63 ng/ml. Administration of atropine (100–200 micrograms/kg) inhibited the effects of both CCK-8 and pentagastrin; however, hexamethonium (5 mg/kg) failed to block the contractile response induced by CCK-8 and pentagastrin. These results indicate that CCK-8 and related peptides can act as local modulators in controlling the neural regulation of gastric motility.


1994 ◽  
Vol 266 (4) ◽  
pp. G713-G721 ◽  
Author(s):  
Y. Kitsukawa ◽  
Z. F. Gu ◽  
P. Hildebrand ◽  
R. T. Jensen

Endothelin (ET)-like immunoreactivity and ET binding sites are widely distributed in the gastrointestinal tract, and ET causes contraction of stomach muscle strips. To determine whether ETs could interact with gastric smooth muscle cells directly and alter function, we measured binding of 125I-ET-1, 125I-ET-2, and 125I-ET-3 to dispersed gastric smooth muscle cells from guinea pig and their abilities to alter cell length. Each ligand bound in a time- and temperature-dependent manner, which was specific and saturable. Analysis of the dose-inhibition curves of both ET-1 and ET-3 for binding of each ligand indicated the presence of two classes of receptors, one class (ETA receptor) with a high affinity for ET-1 and ET-2 but a low affinity for ET-3, and the other (ETB receptor) with a high affinity for ET-1, ET-2, and ET-3. The ligands were rapidly internalized by both receptors; however, it was greater with ETA receptors. ET-1 stimulated muscle contraction (50% effective concentration approximately 2 nM), whereas ET-3 did not stimulate contraction or cause relaxation. These results demonstrate that gastric smooth muscle cells possess two classes of ET receptors. One type (ETA) has a high affinity for ET-1 and ET-2 and a low affinity for ET-3, and receptor occupation results in rapid ligand internalization and muscle contraction; the other type (ETB) has a high affinity for ET-1, ET-2, and ET-3, and receptor occupation results in a lesser degree of ligand internalization than the ETA receptor and does not alter contractile behavior.


Sign in / Sign up

Export Citation Format

Share Document