Molecular mechanisms underlying the role of nitric oxide in the cardiovascular system

1998 ◽  
Vol 7 (11) ◽  
pp. 1769-1779 ◽  
Author(s):  
Jean-Claude Stoclet ◽  
Eric Troncy ◽  
Bernard Muller ◽  
Claire Brua ◽  
Andrei L Kleschyov
2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


1996 ◽  
Vol 786 (1 Near-Earth Ob) ◽  
pp. 233-244 ◽  
Author(s):  
WEE SOO SHIN ◽  
HIROYUKI KAWAGUCHI ◽  
TOSHINOBU SASAKI ◽  
YUE PENG WANG ◽  
WEI DONG YANG ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Feng ◽  
Yahui Feng ◽  
Liming Gu ◽  
Pengfei Liu ◽  
Jianping Cao ◽  
...  

Ionizing radiation and radioactive materials have been widely used in industry, medicine, science and military. The efficacy of radiotherapy and adverse effects of normal tissues are closed related to cellular radiosensitivity. Molecular mechanisms underlying radiosensitivity are of significance to tumor cell radiosensitization as well as normal tissue radioprotection. 5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthases (NOS) and aromatic amino acid hydroxylases, and its biosynthesis involves de novo biosynthesis and a pterin salvage pathway. In this review we overview the role of BH4 metabolism in modulating radiosensitivity. BH4 homeostasis determines the role of NOS, affecting the production of nitric oxide (NO) and oxygen free radicals. Under conditions of oxidative stress, such as UV-radiation and ionizing radiation, BH4 availability is diminished due to its oxidation, which subsequently leads to NOS uncoupling and generation of highly oxidative free radicals. On the other hand, BH4/NOS axis facilitates vascular normalization, a process by which antiangiogenic therapy corrects structural and functional flaws of tumor blood vessels, which enhances radiotherapy efficacy. Therefore, BH4/NOS axis may serve as an angel or a devil in regulating cellular radiosensitivity. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the potential mechanisms. These advances have demonstrated that it is possible to modulate cellular radiosensitivity through BH4 metabolism.


2011 ◽  
Vol 12 (9) ◽  
pp. 1406-1415 ◽  
Author(s):  
Daniele Mancardi ◽  
Alessandra Florio Pla ◽  
Francesco Moccia ◽  
Franco Tanzi ◽  
Luca Munaron

Author(s):  
Nini Skovgaard ◽  
Gina Galli ◽  
Augusto Abe ◽  
Edwin W. Taylor ◽  
Tobias Wang

Author(s):  
Weilue He ◽  
Maria Paula Kwesiga ◽  
Eyerusalem Gebreyesus ◽  
Sijia Liu

The underlying pathology of most cardiovascular diseases (CVDs) such as coronary artery disease, high blood pressure, and stroke involves decreased cardiovascular contractility and anatomic alterations in cardiovascular structures. Nitric oxide (NO) regulates vascular tone and contractile function of myocardium and maintains blood vessel homeostasis. Interestingly, the effect of NO is like a double-edged sword in the body. Insufficient NO causes hypertension and atherosclerosis, while an overproduction of NO may foster inflammation and cause heart infarction and shock. In addition, growing evidences have shown that oxidative stress plays pivotal roles in the initiation and progression of CVDs. This chapter will discuss in detail the roles NO plays in the cardiovascular system under both physiological and pathological conditions. We will focus on: (1) the molecular mechanism of cardiovascular contraction, (2) NO/Ca2+-induced muscle relaxation, (3) NO-related structural change in blood vessels, and (4) redox balance in the cardiovascular system. The relationships between these molecular mechanisms and the characteristics of CVDs will be highlighted.


2011 ◽  
Vol 301 (2) ◽  
pp. R267-R275 ◽  
Author(s):  
Kirk P. Conrad

Pregnancy is a unique physiological condition of profound maternal renal and systemic vasodilation. Our goal has been to unveil the reproductive hormones mediating this remarkable vasodilatory state and the underlying molecular mechanisms. In addition to advancing our knowledge of pregnancy physiology, reaching this goal may translate into therapeutics for pregnancy pathologies such as preeclampsia and for diseases associated with vasoconstriction and arterial stiffness in nonpregnant women and men. An emerging player is the 6 kDa corpus luteal hormone relaxin, which circulates during pregnancy. Relaxin administration to rats and humans induces systemic and renal vasodilation regardless of sex, thus mimicking the pregnant condition. Immunoneutralization or elimination of the source of circulating relaxin prevents renal and systemic vasodilation in midterm pregnant rats. Infertile women who become pregnant by donor eggs (IVF with embryo transfer) lack a corpus luteum and circulating relaxin, and they show a markedly subdued gestational increase in glomerular filtration rate. These data implicate relaxin as one of the vasodilatory reproductive hormones of pregnancy. There are different molecular mechanisms underlying the so-called rapid and sustained vasodilatory actions of relaxin. The former is mediated by Gαi/o protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of endothelial nitric oxide synthase, the latter by vascular endothelial and placental growth factors, and increases in arterial gelatinase(s) activity. The gelatinases, in turn, hydrolyze big endothelin (ET) at a gly-leu bond to form ET1–32, which activates the endothelial ETB receptor/nitric oxide vasodilatory pathway.


Sign in / Sign up

Export Citation Format

Share Document