scholarly journals Formulation and Physicochemical Characterization of Cyclosporine Microfiber by Electrospinning

2019 ◽  
Vol 9 (2) ◽  
pp. 249-254
Author(s):  
Shahla Mirzaeei ◽  
Ghobad Mohammadi ◽  
Navid Fattahi ◽  
Pardis Mohammadi ◽  
Ali Fattahi ◽  
...  

Purpose: The objective of this study was to improve the permeability and water solubility rate of a poor water soluble drug, cyclosporine A (CsA). Methods: In order to improve the drug dissolution rate and oral bioavailability, electrospinning method was used as an approach to prepare. The fibers were evaluated for surface morphology, thermal characterizations, drug crystallinity, in vitro drug release and in vivo bioavailability studies. Results: Scanning electron microscope (SEM) results confirmed that the fibers were in microsize range and the size of the fibers was in the rang of 0.2 to 2 micron. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (XRPD) analysis ensured that the crystalline lattice of drug were weakened or destroyed in the fibers. The drug release was 15.28%, 20.67%, and 32.84% from pure drug, fibers of formulation B, and formulation A, respectively. In vivo study results indicated that the bioavailability parameters of the optimized fiber formulation were improved and the maximum concentration (Cmax) were significantly higher for fibers (3001 ng/mL) than for pure drug (2550 ng/mL). The dissolution rate of the formulations was dependent on the nature and ratio of drug to carriers. Conclusion: The physicochemical properties showed that the optimized mixture of polyethylene glycol (PEG) and povidone (PVP) fibers could be an effective carrier for CsA delivery. PEG and PVP fibers improved the absolute bioavailability and drug dissolution rate with appropriate physicochemical properties.

2020 ◽  
Vol 17 ◽  
Author(s):  
Eduarda Rocha Bigogno ◽  
Luciano Soares ◽  
Matheus Henrique Ruela Mews ◽  
Melissa Zétola ◽  
Giovana Carolina Bazzo ◽  
...  

Background: Solid dispersions (SDs) have been extensively used to increase dissolution of poorly water-soluble drugs. However, there are few studies exploring SDs properties that must be considered during tablet development, like tabletability. Poorly water-soluble drugs with poor compression properties and high therapeutic doses, like gemfibrozil, are an additional challenge in the production of SDs-based tablets. Objective: This study evaluates the applicability of SDs to improve both tabletability and dissolution rate of gemfibrozil. A SD-based tablet formulation was also proposed. Method: SDs were prepared by ball milling, using hydroxypropyl methylcellulose (HPMC) as carrier, according to a 23 factorial design. The formulation variables were: gemfibrozil:HPMC ratio, milling speed, and milling time. The response in the factorial analysis was the tensile strength of the compacted SDs. Dissolution rate and solid-state characterization of SDs were also performed. Results: SDs showed simultaneous drug dissolution enhancement and improved tabletability when compared to corresponding physical mixtures and gemfibrozil. The main variable influencing drug dissolution and tabletability was the gemfibrozil:HPMC ratio. Tablets containing gemfibrozil-HPMC-SD (1:0.250 w/w) and croscarmellose sodium showed fast and complete drug release while those containing the same SD and sodium starch glycolate exhibited poor drug release due to their prolonged disintegration time. Conclusion: SDs proved to be effective for simultaneously improving tabletability and dissolution profile of gemfibrozil. Tablets containing gemfibrozil-HPMC-SD and croscarmellose sodium as disintegrating agent showed improved drug release and good mechanical strength, demonstrating the potential of HPMC-based SDs to simultaneously overcome the poor dissolution and tabletability properties of this drug.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Madhuri S. Rodde ◽  
Ganesh T. Divase ◽  
Tejas B. Devkar ◽  
Avinash R. Tekade

The objective of this investigation was to improve the solubility of the poorly water soluble drug atorvastatin (ATR), using solid dispersion (SD) techniques, with Neem Gum (NG) as a hydrophilic carrier. The effects of the polymer concentration and method of preparation on the solubility and dissolution rate were studied. The results showed that the solubility of ATR increases with increasing NG concentration. However, dissolution rate of ATR from its SD was dependent on the method used to prepare SD. Anin vitrodrug release study revealed that the solvent evaporation technique is a more convenient and effective method of preparing SD than kneading method. The SD was characterized using DSC, SEM, and XRD study. Anin vivostudy was performed in which the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG CoA) reductase inhibition activity was measured. A significant reduction in HMG CoA reductase activity was observed with SD of ATR compared with the plain drug. Anex vivoabsorption study was carried out using modified apparatus developed in our laboratory. Thein vitrodrug release andin vivoandex vivostudies clearly demonstrated the potential of hydrophilic NG in enhancing the solubility, dissolution rate, and bioavailability of ATR.


Author(s):  
Ankit Mishra ◽  
Priyanka Chaturvedi ◽  
Pranali Mishra ◽  
MS Sudheesh

The present study aimed to enhance the dissolution rate, therefore bioavailability, of famotidine (FMT) using its solid dispersions (SDs) with polyvinyl pyrrolidone (PVP)-K 30, milk powder, and inulin, both in-vitro and in-vivo. The study was also aimed to compare the effect of different amorphous polymers in enhancing the dissolution rate of FMT. The SDs were prepared with a 1:4 weight ratio by a solvent evaporation technique. Evaluation of the properties of the SDs was performed using dissolution, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) studies. The SDs of FMT exhibited an enhanced dissolution rate. The FTIR spectroscopic studies showed the stability of FMT and the absence of well-defined drug excipient interaction. The XRD studies indicated the amorphous state of FMT in SDs. The drug release rate of all SDs formulation was found to be greater than the pure drug. Within one hour of dissolution studies, 99.43%, 92.5%, and 58.93% drug release were obtained, respectively, for PVP K-30, milk powder, and inulin. The first two were showing significantly higher release. SDs were also studied for bioavailability studies in-vivo in rats, which confirms that the SDs prepared by PVP K-30 and milk powder significantly enhancing the bioavailability of FMT. The maximum concentration of 15.05±2.45 μg/ml was achieved in 2 hours, and the area under the curve was found to be 33.78±7.3 μg. hour/ml. Therefore, the study results conclude that SDs of the FMT prepared by PVP K-30 successfully increases the dissolution and in-vivo bioavailability. Keywords – Solid dispersion, Second generation solid dispersions, Famotidine, In-vivo bioavailability, amorphous polymers, dissolution enhancement, solubility enhancement.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rana M.F. Sammour ◽  
Bappaditya Chatterjee ◽  
Muhammad Taher ◽  
Mohammed S.M. Saleh ◽  
Aliasgar Shahiwala

Background: Improved bioavailability of Aceclofenac (ACE) may be achieved through proniosomes, which is considered as one of the most effective drug delivery systems and is expected to represent a valuable approach for the development of a better oral dosage form as compared to the existing product. However, the carrier in this system plays a vital role to control the drug release and modulate drug dissolution. Accordingly, a comparative study between different carriers can give clear ideas on the selection of carriers to prepare ACE proniosomes. Objective: This study aims to evaluate the role of maltodextrin, glucose, and mannitol as carriers on in vitro and in vivo performance of Aceclofenac (ACE) proniosomes. Methods: Three formulations of proniosomes were prepared by the slurry method using the 100 mg ACE, 500 mg Span 60, 250 mg Cholesterol with 1300mg of different carriers, i.e., Glucose (FN1), Maltodextrin (FN2), and Mannitol (FN3). In vitro, drug release studies were conducted by the USP paddle method, while in vivo studies were performed in albino rats. Pure ACE was used as a reference in all the tests. Lastly, the results were analyzed using the High-Pressure Liquid Chromatography (HPLC) method, and data were evaluated using further kinetic and statistical tools. Results: No significant differences (p > 0.05) in entrapment efficiency (%EE) of FN1, FN2, and FN3 (82 ± 0.5%, 84 ± 0.66%, and 84 ± 0.34% respectively) were observed and formulations were used as such for further in vitro and in vivo evaluations. During in vitro drug release studies, the dissolved drug was found to be 42% for the pure drug, while 70%, 17% 30% for FN1, FN2, and FN3 respectively at 15 min. After 24 hrs, the pure drug showed a maximum of 50 % release while 94%, 80%, 79% drug release were observed after 24 hr for FN1, FN2, and FN3, respectively. The in vivo study conducted using albino rats showed a higher Cmax and AUC of FN1 and FN2 in comparison with the pure ACE. Moreover, the relative oral bioavailability of proniosomes with maltodextrin and glucose as carriers compared to the pure drug was 183% and 112% respectively. Mannitol based formulation exhibited low bioavailability (53.7%) may be attributed to its osmotic behavior. Conclusion: These findings confirm that a carrier plays a significant role in determining in vitro and in vivo performance of proniosomes and careful selection of carrier is an important aspect of proniosomes optimization.


2012 ◽  
pp. 31-35
Author(s):  
Truong Dinh Thao Tran ◽  
Ha Lien Phuong Tran ◽  
Nghia Khanh Tran ◽  
Van Toi Vo

Purposes: Aims of this study are dissolution enhancement of a poorly water-soluble drug by nano-sized solid dispersion and investigation of machenism of drug release from the solid dispersion. A drug for osteoporosis treatment was used as the model drug in the study. Methods: melting method was used to prepare the solid dispersion. Drug dissolution rate was investigated at pH 1.2 and pH 6.8. Drug crystallinity was studied using differential scanning calorimetric and powder X-ray diffraction. In addition, droplet size and contact angle of drug were determined to elucidate mechanism of drug release. Results: Drug dissolution from the solid dispersion was significantly increased at pH 1.2 and pH 6.8 as compared to pure drug. Drug crystallinity was changed to partially amorphous. Also dissolution enhancement of drug was due to the improved wettability. The droplet size of drug was in the scale of nano-size when solid dispersion was dispersed in dissolution media. Conclusions: nano-sized solid dispersion in this research was a successful preparation to enhance bioavailability of a poorly water-soluble drug by mechanisms of crystal changes, particle size reduction and increase of wet property.


2017 ◽  
Vol 23 (3) ◽  
pp. 467-480 ◽  
Author(s):  
Satyanarayan Pattnaik ◽  
Kamla Pathak

Background: Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Description: Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. Conclusion: This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed.


2020 ◽  
Vol 15 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Vikas Jhawat ◽  
Gandhi Sivaraman ◽  
Om Prakash Sunnapu ◽  
Ramya Krishna Nakkala ◽  
...  

Background: Venlafaxine HCl is a selective serotonin reuptake inhibitor which is given in the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for prolonged effect. Objective: The objective was to prepare and optimize the controlled release core in cup matrix tablet of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the effect with rate controlled drug release. Methods: The controlled release core in cup matrix tablets of venlafaxine HCl were prepared using HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium sterate, hydrogenated castor oil and micro crystalline cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations of polymers were prepared and evaluated for different physicochemical parameters such FTIR analysis for drug identification, In-vitro drug dissolution study was performed to evaluate the amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order, first order, Hixson–crowell and Higuchi equation to determine the mechanism of drug release and stability studies for 3 months as observed. Results: The results of hardness, thickness, weight variation, friability and drug content study were in acceptable range for all formulations. Based on the In vitro dissolution profile, formulation F-9 was considered to be the optimized extending the release of 98.32% of drug up to 24 hrs. The data fitting study showed that the optimized formulation followed the zero order release rate kinetics and also compared with innovator product (flavix XR) showed better drug release profile. Conclusion: The core-in-cup technology has a potential to control the release rate of freely water soluble drugs for single administration per day by optimization with combined use of hydrophilic and hydrophobic polymers.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 36-39
Author(s):  
S Deshmane ◽  
◽  
K Gandhi ◽  
S. Nagpure ◽  
A. Sawant ◽  
...  

The new mathematical model was developed by studying angle of slide using N, N-dimethyl acetamide, non-volatile liquid vehicle and prepared liquisolid tablets, in which the different concentrations of non-volatile liquid adsorbed over carrier and coating material separately. Both DSC and FT-IR study showed better compatibility and stability. The optimized formulation showed higher drug release during in-vitro and in-vivo study against conventional and marketed preparation. The present work concludes that N, N-dimethyl acetamide enhanced the solubility of pioglitazone HCl with higher dissolution rate through liquisolid technique.


Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


Author(s):  
Moon Rajkumar ◽  
Gattani Surendra

 Objective: The objective of this study was to increase the solubility and dissolution rate of paliperidone (PAL) by preparing its nanocrystals using different hydrophilic carriers by antisolvent precipitation technique.Methods: The nanoparticles (NP) were characterized for aqueous solubility, drug content, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, particle size, and in vitro-in vivo analysis.Results: The results showed improved solubility and dissolution rate of NPs when compared to pure drug and physical mixture (PM). Solubility data showed a linear graph giving an indication that there is a gradual increase in the solubility profile of the drug with an increase in concentration of the carriers. At highest concentration, the solubility of NPs with Plasdone S630, Povidone K-25, and PVP K-30 found to be increased by 12 folds, 9 folds and 6 folds, respectively, as compared to pure drug. The release profile of NPs with Plasdone S630 in terms of dissolution efficiency at 60 min (DE60), initial dissolution rate (IDR), amount release in 15 min (Q15 min), and time for 75% release (t75%) shows better results when compared to pure drug, PM, and also NPs with povidone 25 and povidone 30. In vivo study reveals that optimized NPs elicited significant induction of cataleptic behavior which is the indication of antipsychotic agent(s) effect.Conclusion: The process antisolvent precipitation under constant stirring may be a promising method to produce stable PAL NPs with markedly enhanced solubility and dissolution rate due to nanonization with the increased surface area, improved wettability, and reduced diffusion pathway.


Sign in / Sign up

Export Citation Format

Share Document