scholarly journals Review on Anti-CD19 CAR T Therapy against B-Cell Malignancies and Future Implications

Author(s):  
Kasia M. Tywonek ◽  
Milena Hurtarte

This review examines CAR T CD19 immunotherapy, a newly FDA approved targeted therapy for B-Cell Acute Lymphoblastic Leukemia treatment. This therapy utilizes modified T cells from the patient's immune system, engineered to possess an anti-CD19 receptor that can recognize the specific CD19 antigen expressed on the surface of malignant B-lymphocytes. Using this highly individualized treatment, cancer types with a high rate of metastasis or relapse can be treated by the targeted nature of this therapy. The review aims to summarize the process through which CAR T was developed, from its inception to FDA approval. The material examined is current until March 2019 and explores the mechanisms and management of CAR T cell toxicity experienced by patients undergoing treatment. Clinical trials from respective stages of development are also detailed and summarized. The viable treatment options for patients suffering from B-cell acute lymphoblastic leukemia (B-ALL) are outlined. Despite the promising remission rates of CAR T therapy, its accessibility is limited due to current cost of treatment. With advancements in technology and improved understanding of immune-based therapies, it is possible that this method  can become a more viable and affordable treatment option for patients in the future.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-20
Author(s):  
Monique Chavez ◽  
Erica Barnell ◽  
Malachi Griffith ◽  
Zachary Skidmore ◽  
Obi Griffith ◽  
...  

Multiple Myeloma (MM) is a malignancy of plasma cells that affects over 30,000 Americans every year. Despite advances in the treatment of the disease, approximately 12,000 American patients will still die of MM in 2019. One of the mainstays of treatment for MM is the immunomodulatory and antiangiogenic drug lenalidomide; which is used in induction therapy, maintenance therapy and treatment of relapsed disease. Although not fully elucidated, lenalidomide's mechanism of action in MM involves the drug binding to Cerebelon (CBN) and leads to the subsequent degradation of the Ikaros (IKZF1) and Aiolos (IKZF3) transcription factors (TF). These TFs play important regulatory roles in lymphocyte development. Despite lenalidomide's importance in MM treatment, several groups have reported that MM patients treated with lenalidomide rarely go on to develop B-cell acute lymphoblastic leukemia (B-ALL). The genetics and clonal relationship between the MM and subsequent B-ALL have not been previously defined. Importantly, it is not clear if the MM and B-ALL arise from the same founding clone that has been under selective pressure during lenalidomide treatment. As deletions in IKZF1 are common in B-ALL, one could hypothesize that lenalidomide's mechanism of action mimics this alteration and contributes to leukemogenesis. We sequenced the tumors from a cohort of seven patients with MM treated with lenalidomide who later developed B-ALL. These data did not show any mutational overlap between the MM and ALL samples-the tumors arose from different founding clones in each case. However, several genes were recurrently mutated in the B-ALL samples across the seven patients. These genes included TP53, ZFP36L2, KIR3DL2, RNASE-L, and TERT. Strikingly, five of the seven patients had a TP53 mutations in the B-ALL sample that was not present in the matched MM sample. The frequency of TP53 mutations in our cohort was much higher than that reported in adult de novo B-ALL patients which can range between 4.1-6.4% (Hernández-Rivas et al. 2017 and Foa et al. 2013). Utilizing CRISPR-Cas9 gene editing, we disrupted the Zfp36l2 or Actb in murine hematopoietic stem cells (HSCs) of mice with or without loss of Trp53. We performed our first transplantation experiment in which the cohorts of mice have loss of Trp53 alone, loss of Zfp36l2 alone, loss of both Trp53 and Zfp36l2, or a control knockout (KO) of Actb. To characterize the disruption of Zfp36l2 alone and in combination with Trp53 we analyzed the hematopoietic stem and progenitor cell compartments in the bone marrow of the above transplanted mice. In mice with a loss of Zfp36l2 there is a decrease in Lin- Sca-1+ c-Kit+ (LSK), short term-HSC (ST-HSC), and multipotent progenitors (MPP). This decrease was not observed in the mice with a loss of both Trp53 and Zfp36l2, where instead we noted an increase in monocyte progenitors (MP), granulocytes-macrophage progenitors (GMP), and common myeloid progenitors (CMP) cells. In this Trp53 Zfp36l2 double loss model we also noted a decrease in B220+ B-cells that was not seen in the Zfp36l2 alone. In this cohort of Trp53 Zfp36l2 loss, we characterized B-cell development through hardy fraction flow cytometry, and identified a decrease in fractions A and B/C (pre-pro and pro-B-cells, respectively) as compared to Zfp36l2 or Actb alone. As lenalidomide does not bind to Cbn in mice, we used the human B-ALL NALM6 cell line to test if treatment with lenalidomide will lead to a selective growth advantage of cells with the same genes knocked out versus wild-type control cells grown in the same culture. We hypothesize that lenalidomide treatment selectively enriched for pre-existing mutated cell clones that evolved into the B-ALL. Preliminary data in NALM6 cells with a loss of TP53 demonstrate a slight increase in cell number at day 7 compared to a RELA control. These experiments will be repeated with concurrent ZFP36L2 and TP53 mutations as well as ZFP36L2 alone. Treatment-related disease is a key consideration when deciding between different treatment options, and this project aims to understand the relationship between MM treatment and B-ALL occurrence. It may be possible to identify MM patients who are at-risk for B-ALL. For example, MM patients who harbor low-level TP53 mutations prior to lenalidomide treatment could be offered alternative treatment options. Disclosures Barnell: Geneoscopy Inc: Current Employment, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees. Wartman:Novartis: Consultancy; Incyte: Consultancy.


2018 ◽  
Vol Volume 12 ◽  
pp. 3885-3898 ◽  
Author(s):  
Stephanie Vairy ◽  
Julia Lopes Garcia ◽  
Pierre Teira ◽  
Henrique Bittencourt

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 474-474
Author(s):  
Regina M. Myers ◽  
Kaitlin Devine ◽  
Yimei Li ◽  
Sophie Lawrence ◽  
Allison Barz Leahy ◽  
...  

Abstract Background: CAR-modified T cells targeting CD19 have produced remarkable responses in relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL); however, relapse continues to be a substantial challenge. CD19+ relapses, which account for 33-78% of relapses, are associated with loss of CAR T-cell surveillance due to short persistence. Thus, strategies to improve functional persistence to prevent and treat CD19+ relapsed disease are crucial. Here, we report our experience administering reinfusions of murine or humanized 4-1BB CD19 CAR T cells in an effort to prolong persistence in patients with demonstrated short persistence to mitigate relapse risk, treat CD19+ relapsed disease, and produce responses after nonresponse to initial CAR infusion. Methods: This analysis included patients aged <30 years treated with a murine CD19 CAR construct, either investigational CTL019 (NCT01626495, NCT02906371) or commercial tisagenlecleucel, or a humanized CD19 CAR construct, huCART19 (NCT02374333), who received ≥1 reinfusion of the same CAR product due to: 1) clinical signs of poor persistence within 6 months (mos) of initial infusion, including peripheral B-cell recovery (BCR) or CD19+ hematogones in the bone marrow, 2) new CD19+ minimal residual disease (MRD) or relapse, or 3) nonresponse to initial infusion. The huCART19 trial included patients who had previously received a CAR T cell product (CAR-exposed), whereas all patients reinfused with CTL019/tisagenlecleucel were CAR-naïve at initial infusion. The primary outcome was complete response (CR) at day 28 after reinfusion, defined as complete remission with establishment or maintenance of B-cell aplasia. Secondary outcomes included CRS incidence, cumulative incidence of relapse (CIR) and overall survival (OS). Results: Among 229 CAR-naïve and 33 CAR-exposed patients treated with CD19 CAR between 2012-2020, 81 received ≥1 reinfusion (investigational CTL019, n=44; commercial tisagenlecleucel, n=11; huCART19, n=13 CAR-naïve and n=13 CAR-exposed). In addition, 18 patients received PD-1 blockade after their first (n=11) or subsequent (n=7) reinfusions. Indications for first reinfusion were peripheral BCR (CAR-naïve, n=32; CAR-exposed, n=6), hematogones (CAR-naïve, n=21; CAR-exposed, n=4), CD19+ MRD/relapse (CAR-naïve, n=10, CAR-exposed, n=0), and nonresponse to initial infusion (CAR-naïve, n=5, CAR-exposed, n=3). CRS grade ≥2 (Penn scale) occurred in 19 patients (grade 2, n=13; grade 3, n=4; grade 4, n=2). Grade 3-4 events only occurred in patients with active disease at time of reinfusion. Twenty-two patients had an inpatient admission within 30 days of first reinfusion, of which 7 required intensive care unit admission Among the 63 patients reinfused for relapse prevention, 33 (52%) had a CR at day 28. With a median duration of follow-up of 38 mos, 13 experienced a subsequent relapse (7 CD19+, 4 CD19-, 2 CD19-subset negative), 4 received alternative therapy or allogeneic hematopoietic stem cell transplantation (HSCT) in remission, and 16 remain in remission without further therapy at a median of 39 mos after first reinfusion. The median duration of B-cell aplasia was 8 mos (IQR 2-35) after reinfusion. Of the 30 with no response (NR), 10 had a subsequent CD19+ relapse, 15 received alternative therapy or HSCT, and 5 remain in remission without further therapy at a median of 43 mos after reinfusion. CIR and OS were not statistically significantly different between patients with CR or NR (CIR, p=0.26; OS, p=0.25) (Figure A-B). However, at 24 mos after reinfusion, CIR was 29% (95% CI, 11-44%) for CR compared to 61% (95% CI, 24-80%) for NR; OS was 90% (95% CI, 80-100%) for both groups. Of the 10 patients reinfused for relapse, 5 (50%) had a CR; 2 subsequently experienced a CD19+ relapse, 2 received an HSCT in remission, and 1 remains in remission without further therapy at 18 mos after reinfusion. Of the 8 patients reinfused for nonresponse to initial infusion, 7 were evaluable; none had a CR, and all died at a median of 2.5 mos after reinfusion. Conclusions: Reinfusion of CTL019/tisagenlecleucel or huCART19 is safe, may prolong B-cell aplasia in patients with short CAR persistence and reduce relapse risk, and can induce remissions in patients with CD19+ relapsed disease. Thus, reinfusion may provide an alternative to HSCT for short persistence. However, reinfusion is not effective for patients with nonresponse to initial CAR infusion. Figure 1 Figure 1. Disclosures Callahan: Novartis: Speakers Bureau. Rheingold: Optinose: Other: Spouse's current employment; Pfizer: Research Funding. June: Tmunity, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Current equity holder in publicly-traded company; Novartis: Patents & Royalties; AC Immune, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Consultancy. Grupp: Novartis, Roche, GSK, Humanigen, CBMG, Eureka, and Janssen/JnJ: Consultancy; Novartis, Adaptimmune, TCR2, Cellectis, Juno, Vertex, Allogene and Cabaletta: Other: Study steering committees or scientific advisory boards; Novartis, Kite, Vertex, and Servier: Research Funding; Jazz Pharmaceuticals: Consultancy, Other: Steering committee, Research Funding. Maude: Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Wugen: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document