Velocity at Lactate Threshold and Running Economy Must Also be Considered Along With Maximal Oxygen Uptake When Testing Elite Soccer Players During Preseason

2011 ◽  
Vol 25 (2) ◽  
pp. 414-419 ◽  
Author(s):  
Giorgos G Ziogas ◽  
Kostas N Patras ◽  
Nicholas Stergiou ◽  
Anastasios D Georgoulis
2009 ◽  
Vol 107 (6) ◽  
pp. 1918-1922 ◽  
Author(s):  
Jared R. Fletcher ◽  
Shane P. Esau ◽  
Brian R. MacIntosh

The purpose of this study was to compare running economy across three submaximal speeds expressed as both oxygen cost (ml·kg−1·km−1) and the energy required to cover a given distance (kcal·kg−1·km−1) in a group of trained male distance runners. It was hypothesized that expressing running economy in terms of caloric unit cost would be more sensitive to changes in speed than oxygen cost by accounting for differences associated with substrate utilization. Sixteen highly trained male distance runners [maximal oxygen uptake (V̇o2max) 66.5 ± 5.6 ml·kg−1·min−1, body mass 67.9 ± 7.3 kg, height 177.6 ± 7.0 cm, age 24.6 ± 5.0 yr] ran on a motorized treadmill for 5 min with a gradient of 0% at speeds corresponding to 75%, 85%, and 95% of speed at lactate threshold with 5-min rest between stages. Oxygen uptake was measured via open-circuit calorimetry. Average oxygen cost was 221 ± 19, 217 ± 15, and 221 ± 13 ml·kg−1·km−1, respectively. Caloric unit cost was 1.05 ± 0.09, 1.07 ± 0.08, and 1.11 ± 0.07 kcal·kg−1·km−1 at the three trial speeds, respectively. There was no difference in oxygen cost with respect to speed ( P = 0.657); however, caloric unit cost significantly increased with speed ( P < 0.001). It was concluded that expression of running economy in terms of caloric unit cost is more sensitive to changes in speed and is a more valuable expression of running economy than oxygen uptake, even when normalized per distance traveled.


2019 ◽  
Vol 49 (S2) ◽  
pp. 199-204 ◽  
Author(s):  
Michael J. Joyner

Abstract Humans vary in their ‘natural ability’ related to sports performance. One facet of natural ability reflects so-called intrinsic ability or the ability to do well with minimal training. A second facet of natural ability is how rapidly an individual adapts to training; this is termed trainability. A third facet is the upper limit achievable after years of prolonged intense training; this represents both intrinsic ability and also trainability. There are other features of natural ability to consider, for example body size, because some events, sports, or positions favor participants of different sizes. In this context, the physiological determinants of elite endurance performance, especially running and cycling, are well known and can be used as a template to discuss these general issues. The key determinants of endurance performance include maximal oxygen uptake $$(\dot{V}{\text{O}}_{2\hbox{max} } )$$(V˙O2max), the lactate threshold, and running economy (efficiency in the case of cycling or other sports). In this article, I use these physiological determinants to explore what is known about the genetics of endurance performance. My main conclusion is that at this time there are very few, if any, obvious relationships between these key physiological determinants of performance and DNA sequence variation. Several potential reasons for this lack of relationship will be discussed.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 75
Author(s):  
Per-Øyvind Torvik ◽  
Roland van den Tillaar ◽  
Gaute Iversen

The aim of this study was to investigate if the order of submaximal lactate threshold and maximal oxygen uptake testing would influence test outcomes. Twelve well-trained male cross-country skiers (mean age 19.6 years) performed two test sessions within a week in a within-subjects repeated measures with cross-over design study. A maximal oxygen uptake test (VO2max) followed by a lactate threshold (LT) test and vice versa, were performed. The test data included VO2, blood lactate (La-b), heart rate (HR), performance speed, Borg scale (RPE) at all stages and lactate accumulation throughout the whole test protocol including the breaks. No significant effect of testing order was found for: VO2max (74.23 vs. 73.91 mL∙min−1∙kg−1), maximal HR (190.7 vs. 189.9 bpm) and speed at LT during uphill running. Three out of four common definitions of LT resulted in the same La-b at the last two steps, 11 and 12 km/h respectively, in the two protocols. It is worth noting that VO2, HR and La-b were higher in the first two stages of the LT test when VO2max was tested first in the protocol. Well-trained cross-country skiers conclusively attained a similar VO2max and LT in both protocols, and the two tests did not seem to influence each other in terms of the degree of exhaustion that occurs in a single VO2max or an incremental LT test. However, when using a curvilinear function to define the LT, it is important to know that the VO2max test can influence levels of VO2, HR and La-b at the first two stages of the LT test.


2018 ◽  
Vol 30 (2) ◽  
pp. 216-228 ◽  
Author(s):  
Greg Doncaster ◽  
John Iga ◽  
Viswanath Unnithan

Purpose: The purpose of the study was to examine differences in measures of cardiorespiratory fitness and determinants of running economy with respect to maturity status in a group of highly trained youth soccer players. Methods: A total of 21 highly trained youth soccer players participated in this study. On separate visits, players’ peak oxygen uptake (VO2peak), running economy at 3 different speeds [8 km·h−1, 80% gaseous exchange threshold (GET), and 95% GET], and pulmonary oxygen uptake (VO2) kinetics were determined. Players also performed a Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). Players were categorized as either “pre-PHV” (peak height velocity) or “mid-PHV” group using the measure of maturity offset. Independent t tests and Cohen’s d effect sizes were then used to assess differences between groups. Results: The mid-PHV group was significantly taller, heavier, and advanced in maturity status. Absolute measures of VO2peak were greater in the mid-PHV group; however, when expressed relative to body mass, fat-free mass, and theoretically derived exponents, VO2peak values were similar between groups. Pre-PHV group presented a significantly reduced VO2 response, during relative submaximal running speeds, when theoretically derived exponents were used, or expressed as %VO2peak. VO2 kinetics (tau) were faster during a low (standing) to moderate (95% GET) transition in the pre-PHV group. Yo-Yo IR1 performance was similar between groups. Conclusion: Although measures of VO2peak and Yo-Yo IR1 performance are shown to be similar between groups, those categorized as pre-PHV group display a superior running economy at relative submaximal running speeds and faster taus during a low to moderate exercise transition than their more mature counterparts.


2020 ◽  
Vol 15 (1) ◽  
pp. 141-145
Author(s):  
Ryo Yamanaka ◽  
Hayato Ohnuma ◽  
Ryosuke Ando ◽  
Fumiya Tanji ◽  
Toshiyuki Ohya ◽  
...  

Purpose: Increases in maximal oxygen uptake () and running economy improve performance in long-distance runners. Nevertheless, long-distance runners require sprinting ability to win, especially in the final phase of competitions. The authors determined the relationships between performance and sprinting ability, as well as other abilities in elite long-distance runners. Methods: The subjects were 12 elite long-distance runners. Mean official seasonal best times in 5000-m (5000 m-SB) and 10,000-m (10,000 m-SB) races within 1 year before or after the examination were 13:58.5 (0:18.7) and 28:37.9 (0:25.2) (mean [SD]), respectively. The authors measured 100-m and 400-m sprint times as the index of sprinting ability. They also measured and running economy ( at 300 m·min−1 of running velocity). They used a single correlation analysis to assess relationships between 5000 m-SB or 10,000 m-SB and other elements. Results: There were significant correlations between 5000 m-SB was significantly correlated with 100-m sprint time (13.3 [0.7] s; r = .68, P = .014), 400-m sprint time (56.6 [2.7] s; r = .69, P = .013), and running economy (55.5 [3.9] mL·kg−1·min−1; r = .59, P = .045). There were significant correlations between 10,000 m-SB and 100-m sprint time (r = .72, P = .009) and 400-m sprint time (r = .85, P < .001). However, there was no significant correlation between 5000 m-SB or 10,000 m-SB and (72.0 [3.8] mL·kg−1·min−1). Conclusions: The authors' data suggest that sprinting ability is an important indicator of performance in elite long-distance runners.


Author(s):  
José Alvero-Cruz ◽  
Elvis Carnero ◽  
Manuel García ◽  
Fernando Alacid ◽  
Lorena Correas-Gómez ◽  
...  

Physiological variables such as maximal oxygen uptake (VO2max), velocity at maximal oxygen uptake (vVO2max), running economy (RE) and changes in lactate levels are considered the main factors determining performance in long-distance races. The aim of this review was to present the mathematical models available in the literature to estimate performance in the 5000 m, 10,000 m, half-marathon and marathon events. Eighty-eight articles were identified, selections were made based on the inclusion criteria and the full text of the articles were obtained. The articles were reviewed and categorized according to demographic, anthropometric, exercise physiology and field test variables were also included by athletic specialty. A total of 58 studies were included, from 1983 to the present, distributed in the following categories: 12 in the 5000 m, 13 in the 10,000 m, 12 in the half-marathon and 21 in the marathon. A total of 136 independent variables associated with performance in long-distance races were considered, 43.4% of which pertained to variables derived from the evaluation of aerobic metabolism, 26.5% to variables associated with training load and 20.6% to anthropometric variables, body composition and somatotype components. The most closely associated variables in the prediction models for the half and full marathon specialties were the variables obtained from the laboratory tests (VO2max, vVO2max), training variables (training pace, training load) and anthropometric variables (fat mass, skinfolds). A large gap exists in predicting time in long-distance races, based on field tests. Physiological effort assessments are almost exclusive to shorter specialties (5000 m and 10,000 m). The predictor variables of the half-marathon are mainly anthropometric, but with moderate coefficients of determination. The variables of note in the marathon category are fundamentally those associated with training and those derived from physiological evaluation and anthropometric parameters.


2006 ◽  
Vol 1 (3) ◽  
pp. 246-260 ◽  
Author(s):  
Darrell L. Bonetti ◽  
Will G. Hopkins ◽  
Andrew E. Kilding

Context:Live-high train-low altitude training produces worthwhile gains in performance for endurance athletes, but the benefits of adaptation to various forms of artificial altitude are less clear.Purpose:To quantify the effects of intermittent hypoxic exposure on kayak performance.Methods:In a crossover design with a 6-week washout, we randomized 10 subelite male sprint kayak paddlers to hypoxia or control groups for 3 weeks (5 days/week) of intermittent hypoxic exposure using a nitrogen-filtration device. Each day's exposure consisted of alternately breathing hypoxic and ambient air for 5 minutes each over 1 hour. Performance tests were an incremental step test to estimate peak power, maximal oxygen uptake, exercise economy, and lactate threshold; a 500-m time trial; and 5 × 100-m sprints. All tests were performed on a wind-braked kayak ergometer 7 and 3 days pretreatment and 3 and 10 days post treatment. Hemoglobin concentration was measured at 1 day pretreatment, 5 and 10 days during treatment, and 3 days after treatment.Results:Relative to control, at 3 days post treatment the hypoxia group showed the following increases: peak power 6.8% (90% confidence limits, ± 5.2%), mean repeat sprint power 8.3% (± 6.7%), and hemoglobin concentration 3.6% (± 3.2%). Changes in lactate threshold, mean 500-m power, maximal oxygen uptake, and exercise economy were unclear. Large effects for peak power and mean sprint speed were still present 10 days posthypoxia.Conclusion:These effects of intermittent hypoxic exposure should enhance performance in kayak racing. The effects might be mediated via changes in oxygen transport.


Sign in / Sign up

Export Citation Format

Share Document