Determination of Key Gyratory Compaction Points for Superpave Mix Design in Arizona

Author(s):  
DA Forstie ◽  
DK Corum
Author(s):  
H. Barry Takallou ◽  
Hussain U. Bahia ◽  
Dario Perdomo ◽  
Robert Schwartz

The effect of different mixing times and mixing temperatures on the performance of asphalt-rubber binder was evaluated. Four different types of asphalt-rubber binders and neat asphalt were characterized using the Strategic Highway Research Program (SHRP) binder method tests. Subsequently, mix designs were carried out using both the SHRP Levels I and II mix design procedures, as well as the traditional Marshall mix design scheme. Additionally, performance testing was carried out on the mixtures using the Superpave repetitive simple shear test at constant height (RSST-CH) to evaluate the resistance to permanent deformation (rutting) of the rubberized asphalt mixtures. Also, six rectangular beams were subjected to repeated bending in the fatigue tester at different microstrain levels to establish rubberized asphalt mixtures’ resistance to fatigue cracking under repeated loadings. The results indicate that the Superpave mix design produced asphalt-rubber contents that are significantly higher than values used successfully in the field. Marshall-used gyratory compaction could not produce the same densification trends. Superpave mixture analysis testing (Level II) was used successfully for rubberized asphalt mixtures. Results clearly indicated that the mixture selected exhibited acceptable rutting and fatigue behavior for typical new construction and for overlay design. Few problems were encountered in running the Superpave models. The results of the RSST-CH indicate that rubber-modified asphalt concrete meets the criteria for a maximum rut depth of 0.5 in.; and more consistent results were measured for fatigue performance analysis using the repeated four-point bending beam testing (Superpave optional torture testing). The cycles to failure were approximately 26,000 at 600 microstrain.


Author(s):  
Stacey D. Diefenderfer ◽  
Benjamin F. Bowers

Performance mix design (PMD) of asphalt mixtures, often referred to as balanced mix design, is a design methodology that incorporates performance testing into the mix design process. The Virginia Department of Transportation (DOT), like many owner agencies, is interested in ways to specify asphalt mix designs better in an effort to make its roadway network more sustainable, longer lasting, and more economical. By adding performance criteria through a PMD framework, that goal can be achieved. Further, a PMD framework should allow for the development of new, innovative methods to increase pavement recyclability, new performance additives, and other means to enhance pavement performance. This paper provides details and documentation of the approach being taken by the Virginia DOT in their efforts to develop a PMD specification. Aspects of development presented include PMD method options, selection of performance tests, and determination of acceptance criteria. A discussion about validating specifications with in-service performance data and addressing quality control and quality assurance is also provided. Although additional work is needed for full development and implementation, the methodology being applied has been found to provide useful outcomes for the Virginia DOT even in the initial stages of development.


Author(s):  
Mehena Oualit ◽  
Amar Irekti ◽  
Yannick Melinge

The dosage of superplasticizer is first determined in mortar mixtures and it is after adjusted in concrete mix trials. Other self compacting concrete (SCC) mix proportioning methods rely on the definition of the superplasticizer saturation dosage in pastes. These approaches to mix design have advantages over the ones based exclusively on concrete batching because it is less expensive and material demanding to perform tests in mortar and paste than in concrete. This paper presents the results of an experimental research carried out to investigate the use of tests performed in paste to define the optimum dosage of superplasticizer for self-compacting concrete. The materials employed were Portland cement, pozzolana and three types of superplasticizers: poly naphthalene sulfonate (PNS), poly melamine sulfonate (PMS) and a polycarboxylate. The saturation point of each superplasticizer was determined in pastes by rheological tests using a coaxial cylinder rheometer AR2000. Self-compacting concretes were prepared using the superplasticizer contents found. The results obtained led to the conclusion that in SCC mixture proportioning methods, the determination of the superplasticizer content in the paste phase is paramount. Nevertheless, final adjustment of w/c+f ratio was always needed in order to produce SCC.


2016 ◽  
Vol 870 ◽  
pp. 293-297
Author(s):  
S.K. Iliopolov ◽  
E.V. Uglova ◽  
K.D. Golyubin

The article contains an overview of Russian and foreign standard documents used for organic binder quality evaluation, the description of the main principles of organic binders selection for asphalt mixes according to the Superpave Mix Design Method, the analysis of climatic conditions of the Southern region of the Russian Federation impacting the performance of Highway M-4 Don asphalt concrete pavements, and selects suitable binder grades for Southern Russia depending on maintenance conditions.


2016 ◽  
Vol 123 ◽  
pp. 754-767 ◽  
Author(s):  
Davood Mostofinejad ◽  
Mojtaba Rostami Nikoo ◽  
Seyed Arman Hosseini

Sign in / Sign up

Export Citation Format

Share Document