Influence of the Rheological Properties of Modified Asphalt Binders on the Load Deformation Characteristics of the Binder-Aggregate Mixtures

2009 ◽  
pp. 77-77-20 ◽  
Author(s):  
AA Tayebali ◽  
JL Goodrich ◽  
JB Sousa ◽  
CL Monismith
2021 ◽  
Vol 13 (18) ◽  
pp. 10271
Author(s):  
Yuchen Guo ◽  
Xuancang Wang ◽  
Guanyu Ji ◽  
Yi Zhang ◽  
Hao Su ◽  
...  

The deteriorating ecological environment and the concept of sustainable development have highlighted the importance of waste reuse. This article investigates the performance changes resulting from the incorporation of shellac into asphalt binders. Seashell powder-modified asphalt was prepared with 5%, 10%, and 15% admixture using the high-speed shear method. The microstructure of the seashell powder was observed by scanning electron microscope test (SEM); the physical-phase analysis of the seashell powder was carried out using an X-ray diffraction (XRD) test; the surface characteristics and pore structure of shellac were analyzed by the specific surface area Brunauer-Emmett-Teller (BET) test; and Fourier infrared spectroscopy (FTIR) qualitatively analyzed the composition and changes of functional groups of seashell powder-modified asphalt. The conventional performance index of seashell powder asphalt was analyzed by penetration, softening point, and ductility (5 °C) tests; the effect of seashell powder on asphalt binder was studied using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR) at high and low temperatures, respectively. The results indicate the following: seashell powder is a coarse, porous, and angular CaCO3 bio-material; seashell powder and the asphalt binder represent a stable physical mixture of modified properties; seashell powder improves the consistency, hardness, and high-temperature performance of the asphalt binder but weakens the low-temperature performance of it; seashell powder enhances the elasticity, recovery performance, and permanent deformation resistance of asphalt binders and improves high-temperature rheological properties; finally, seashell powder has a minimal effect on the crack resistance of asphalt binders at very low temperatures. In summary, the use of waste seashells for recycling as bio-modifiers for asphalt binders is a practical approach.


2020 ◽  
Vol 103 (4) ◽  
pp. 003685042095987
Author(s):  
Ghazi G Al-Khateeb ◽  
Waleed Zeiada ◽  
Mohammed Ismail ◽  
Ahmad Shabib ◽  
Adel Tayara

Major distresses such as rutting, fatigue, and thermal cracking are facing asphalt pavement structures due to continuous heavy traffic loading and climate change. The modification of asphalt binders (one of the main components of the asphalt paving mix) has the potential to mitigate distresses through using different additives. Polymer modified asphalt (PMA) binders showed a noticeable resistance to pavement distresses as reported in previous studies. The present study aims to evaluate the effect of polymer modification on the rheological properties of asphalt binders through laboratory tests. The polymers included styrene-butadiene-styrene (SBS) and epolene emulsifiable (EE2) types. The 60/70 binder was used as a control for comparison. The Mechanistic-Empirical Pavement Design Guide (MEPDG) was also utilized to simulate the effect of PMA binders on the rheological properties under different climatic conditions and structural capacities. Additionally, the MEPDG was further utilized to compare the effect of asphalt binders on rheological properties using four different binder input levels. Findings of the study showed that laboratory tests experienced varying outcomes regarding the most efficient asphalt binder by means of distresses resistance. However, the MEPDG evaluation showed that the overall ranking of asphalt binders positively impacting the rheological properties was as following: (1) 4.5% EE2 PMA, (2) 4% EE2 PMA, (3) 60/70 binder, (4) 5% SBS PMA, and (5) 4% SBS PMA binders. Furthermore, statistical analysis illustrated that the effect of using different binder input levels on the performance of pavement varied relatively to the evaluated distresses. The analysis showed that using different binder input levels would affect, to a certain extent, the asphalt binder influence on rheological properties only when evaluating rutting and fatigue distresses. Therefore, it is recommended that precise asphalt binder inputs, that is, shear complex modulus (G*) and phase angle (δ) are used when designing pavement structures in regions with hot and mild climate conditions.


Author(s):  
Haopeng Wang ◽  
Xueyan Liu ◽  
Panos Apostolidis ◽  
Tom Scarpas

The microstructure and chemical composition of asphalt binders have a significant effect on their rheological properties and, therefore, their performance as road paving binders. This study aims to investigate the effects of warm-mix asphalt (WMA) additives, organic type and chemical type, on the rheological properties and chemical internal structure of base asphalt and crumb rubber modified asphalt (CRMA). A set of dynamic shear rheometer (DSR) tests was conducted to obtain the rheological parameters (e.g., complex viscosity, complex modulus, phase angle) of asphalt binders. The flow activation energy was calculated from Arrhenius equation based on viscosity data to rank the thermal susceptibility. Black diagrams and master curves of complex modulus and phase angle were utilized to analyze the rheological properties. The molecular weight distributions of asphalt binders were inverted from the phase angle master curve to evaluate the molecular weight characteristics. It was found that the the addition of crumb rubber into base asphalt improves the rheological properties of enhanced modulus and elasticity. Organic and chemical types of WMA additives have different chemo-physical effects on both base asphalt and CRMA. Phase angle inversion method provides a powerful tool to monitor the molecular structure change and, therefore, the chemo-physical interactions of asphalt binders induced by modifications. Finally, there is a good correlation between flow activation energy and molecular weight.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1111 ◽  
Author(s):  
Huanan Yu ◽  
Xianping Bai ◽  
Guoping Qian ◽  
Hui Wei ◽  
Xiangbing Gong ◽  
...  

Styrene Butadiene Styrene (SBS) polymer-modified asphalt binders have become widely used in asphalt pavement because of their advantages in high- and low-temperature performance and fatigue resistance. Asphalt pavement is inevitably exposed to sunlight and ultraviolet (UV) radiation during its construction and service life. However, consideration of the aging effect of UV radiation is still limited in current pavement design and evaluation systems. In order to evaluate the impact of UV radiation on the aging properties of SBS-modified asphalt binders, UV aging tests were performed on Rolling Thin Film Oven Test (RTFOT)-aged samples with different UV radiation intensities and aging times. Sixteen different groups of tests were conducted to compare the rheological properties and functional group characteristics of SBS-modified asphalt binders. Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR), FTIR, and SEM tests were conducted to evaluate the aging mechanisms in various UV aging conditions. The results found that UV radiation seriously destroys the network structure formed by the cross-linking effect in SBS-modified asphalt binders, which aggravates the degradation of SBS and results in a great change of rheological properties after UV aging. The nature of SBS-modified asphalt binder aging resulted from the degradation of SBS and the changes of asphalt binder base composition, which lead to the transformation of colloidal structure and the deterioration of asphalt binder performance. The tests also found that continuous UV radiation can increase shrinkage stress in the asphalt binder surface and leads to surface cracking of the asphalt binder.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3986
Author(s):  
Huan-Yun Zhou ◽  
Huai-Bing Dou ◽  
Xian-Hua Chen

Aiming to improve the comprehensive road performance of asphalt binders, especially the high-temperature performance, a novel asphalt binder was prepared by compounding high-quality and low-cost polyethylene (PE) with graphene (GNPs) using a high-speed shearing machine. The rheological properties and interaction mechanism of PE/GNPs composite modified asphalt were investigated using temperature sweep (TeS), multiple stress creep recovery (MSCR), linear amplitude sweep (LAS) and Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM). The experimental results demonstrated that GNPs and PE can synergistically improve the high-temperature performance of asphalt binders and enhance the rutting resistance of pavements; the pre-blended PE/GNPs masterbatch has good medium-temperature fatigue and low-temperature cracking resistance. Meanwhile, PE/GNPs dispersed uniformly in the asphalt matrix, and the microstructure and dispersion of premixed PE/GNPs masterbatch facilitated the asphalt modification. No new absorption peaks appeared in the FT-IR spectra of the composite modified asphalt, indicating that asphalt binders were physically modified with GNPs and PE. These findings may cast light on the feasibility of polyethylene/graphene composite for asphalt modification.


2009 ◽  
Vol 620-622 ◽  
pp. 497-500 ◽  
Author(s):  
Shao Peng Wu ◽  
Jin Gang Wang ◽  
Yuan Zhang

After a preliminary investigation on the binary asphalt/clay binder, the ternary binder was prepared by adding the nanoclay and TAFPACK-SUPER (TPS) to the original asphalt. The previous research shows that exfoliated/intercalated layers homogeneously are dispersed in the asphalt matrix and the nanocomposite has formed. Rotation Thin Film Oven Test (RTFOT) and Pressure Age Vessel Test (PAV) results indicate that the modified asphalt with 3% organic nano-montmorillonite (OMMT) present better performance of aging resistance. The purpose of this research is to attain ternary asphalt binder with better rheological performance and aging resistance. The ternary modified asphalt binder containing 4% OMMT and 12% TPS by weight were prepared at the laboratory scale using high speed shearing mixer. The rheological properties of OMMT/TPS modified asphalt binders were evaluated before and after aging in present paper. Temperature sweep tests and frequency sweep tests were conducted to characterize the rheological properties of modified asphalt using Dynamic Shear Rheometer (DSR). According to the frequency sweep tests, complex modulus master curves were plotted to analysis the rheological properties. The results indicate that nanoclay/TPS/asphalt ternary binders have more excellent performance of rheological and aging resistance at both high and low temperatures, compared with the virginal bitumen and TPS modified asphalt.


Sign in / Sign up

Export Citation Format

Share Document